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Thermal (or electrical) conduction through a stationary, random close-packed gran-
ular material is studied by numerical simulation. The particles are smooth uniform
spheres with either point contacts, or small contact spots under a mechanical load
(resulting in practice from the transmitted bed weight or applied pressure), and
the particle-to-medium conductivity ratio, γ, is assumed to be high (typically, up
to O(103)). To simulate particle arrangements, a recent random close-packing algo-
rithm for N � 1 absolutely rigid spheres in a periodic box is used, and small contact
deformations are rigorously calculated as a perturbation from the Hertz theory and a
mechanical balance of normal contact reactions on the microscale. To solve the con-
duction boundary-value problem for N � 1 and γ � 1, when all the existing ‘exact’
simulation techniques lead to prohibitive convergence difficulties, a novel, asymptotic
algorithm is developed and shown to be highly accurate for all γ > 100. This algo-
rithm is based on matching the outer solution for perfectly conducting spheres in
point contact with the near-contact solutions (that include the effects of finite γ and
small deformation), to provide additional equations for unknown particle tempera-
tures (or potentials) in the outer geometry. The outer problem is then ‘regularized’
and solved by a special economical multipole method. Using these techniques for
N 6 200 and configurational averaging, the non-dimensional effective conductivity
f∗ is found as a universal function of γ and Π = [〈p〉(1 − ν2)/E]1/3, where 〈p〉 is
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the average pressure in the material, and ν and E are the particle Poisson ratio and
Young’s modulus. These results are complemented by the exact values of f∗(γ) for
a material with point contacts and γ < 100. Conduction through a random close
packing of nearly rigid spheres in a vacuum environment is also considered.

Keywords: effective conductivity; granular materials; random close packing;
disordered materials; multipole methods; multiparticle interaction

1. Introduction

Transport properties of granular materials, such as the effective thermal or electrical
conductivity, are important in thermal insulation, powder technology, cryogenic sys-
tems, and many other applications. It is particularly useful to know, from first prin-
ciples, how the method of preparation of a granular material and its microstructure
affect the bulk properties. The characteristic features of a stationary random granu-
lar material are (i) an equilibrium mechanical contact network formed by inclusions
and (ii) a typically very high ratio γ = Λ′/Λe = O(102–103) of particle-to-medium
conductivities. Compared to a simpler case of suspensions, where considerable the-
oretical progress has been made, relatively little work was reported on calculating
the effective transport properties of granular materials from their microstructure. In
pioneering research, Batchelor & O’Brien (1977) considered a random packed bed
of monodisperse spheres with γ � 1, when the conduction is mainly through near-
contact areas, and found the effective conductivity to be Λ∗ ∼ 4.0Λe ln γ. Due to
a weak, logarithmic singularity, the local fluxes through the near-contact regions
are not quite dominant for practically interesting γ and, instead of considering a
more difficult outer problem, Batchelor & O’Brien adjusted their result to exper-
imental data, to obtain Λ∗/Λe ≈ 4.0 ln γ − 11. This relation, however, is subject
to some uncertainty. First, the factor 4.0 is a result of an approximate, analytical
averaging, with an unknown error, and based on a somewhat arbitrary proximity
criterion to find the average coordination number (i.e. the number of contacts per
particle) from experimental data. Second, the conductivity measurements are widely
scattered, which can make the empirical constant of −11 unreliable. It would be
practically useful to include additional physical factors, responsible for this scatter,
in the theoretical calculations, rather than consider the dimensionless conductivity
f∗ = Λ∗/Λe as a unique function of γ. One of the most important factors is the con-
tact deformation. In a free-standing bed subject to gravity, particles transmit weight
and form small contact spots, rather than point contacts, which can substantially
increase the effective conductivity, if γ � 1; this effect can be further amplified by
applying an additional load to a bed. Using a boundary-integral analysis and the
solution of the Hertz contact problem, Batchelor & O’Brien showed that, when two
spheres of radius a are pressed together to form a small contact spot of radius ρ, the
local flux is considerably enhanced if γρ/a > O(10). However, we are not aware of
any theoretical calculations of the effective conductivity for deformable particles, as
a further development of this idea (apart from the work of Chan & Tien (1973), who
considered the simplest and very restrictive case of regular packings in a vacuum
environment, when the conduction is only through the contact spots).

In the present paper, which is a considerable extension of Batchelor & O’Brien’s
analysis and was largely motivated by their pioneering study, a novel, rigorous, and
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Effective conductivity of loaded granular materials 2955

highly accurate mathematical approach to calculating the effective conductivity of
granular materials is developed based on numerical simulation. The problem is solved
in the classical, somewhat idealized formulation, for smooth monodisperse spheres
in an isotropic random close packing, with either point contacts, or small contact
spots under a mechanical load. Realistic frictional particles, having been poured
into a large vessel, normally produce a packing between the limits of random ‘loose’
and close packings and shrink to the close packing only after a subsequent bed
shaking or vibration (Scott & Kilgour 1969). We focus on the random close packing,
since it is a statistically reproducible state, independent of the interparticle friction
(Scott & Kilgour 1969), and put aside friction effects for further investigation. The
contact spot radii and near-contact deformations are rigorously calculated from the
Hertz theory and the mechanical balance of contact forces on the microscale, given
the average pressure in the material as a macroscopic parameter. In the effective
conductivity calculations, perfect contacts are assumed. One can argue that the
inevitable surface roughness in the contact areas is important, and, indeed, there
have been numerous experimental and semi-empirical studies of contact resistance
phenomena (Song & Yovanovich 1988; Song et al . 1989, 1993; Negus et al . 1987;
McWaid & Marshall 1992; Sridhar & Yovanovich 1994, and other works). However,
all the experiments have been made for nominally flat surfaces, at apparent contact
pressures not exceeding 12 MPa. In static granular materials, the contact pressures
are typically much higher, due to the very small contact areas. For a free-standing
bed, e.g. the apparent interparticle contact pressure P at a depth z can be estimated
from the Hertzian contact area (Landau & Lifshitz 1959) and the macroscopic force
balance as

P ∼ 0.5
[
∆ρgz

(
E

1− ν2

)2]1/3

,

where ∆ρ is the density difference between the particles and the medium, g is the
gravity acceleration, E and ν are the particle Young’s modulus and the Poisson ratio.
For steel spheres in a gas environment, this estimate yields relatively large values
of P ∼ 170–630 MPa for z = 1–50 cm. Obviously, the existing correlations for the
contact resistance, all semi-empirical, cannot be relied upon far outside the range of
pressures where they were fitted to experimental data. On the other hand, exper-
imental measurements of the contact heat transfer between a steel bearing ball of
several millimetres in size and a wall at contact pressures of about 1600 MPa were
found to be in excellent agreement with calculations, based on the Hertzian theory
and the assumption of perfect thermal contact (Nakajima 1995). At present, one
can only speculate about the effect of asperities on the granular media conductiv-
ity, and we neglect this effect (as well as the possible presence of superficial oxide
layers). When available, relevant contact resistance data at high pressures can eas-
ily be included in our simulation method, as discussed in § 7. Note that the plastic
deformations of individual asperities do not preclude from using the Hertzian theory
at length-scales exceeding the asperity size. Indeed, the normal load compliance for
granular particles was found to be in very good agreement with the Hertzian the-
ory (Mullier et al . 1991). At the same time, for tangential loads, when the role of
asperities is crucial, the experiments of Mullier et al . (1991) question the validity of
the Mindlin–Deresiewicz (Mindlin & Deresiewicz 1953) theory, developed for elastic
contacts, which is one more reason to leave aside tangential effects at the present
stage of our work.
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Our approach to the conductivity simulations takes the deformation as a small, but
singular perturbation and requires (i) an adequate packing algorithm to prepare an
isotropic, mechanically equilibrium contact network of N � 1 non-deformed spheres
in a cell with triply periodic boundaries and (ii) a method to solve the conduction
multiparticle boundary-value problem for γ � 1 (including the whole practically
interesting range of γ > O(102)), with allowance for contact deformations. Without
periodic boundaries, it would be practically impossible to attain the limit N → ∞
in the conductivity simulations.

Early packing methods with periodic boundaries, both purely geometrical (Jodrey
& Tory 1981, 1985; Moscinski et al . 1989) and ‘thermodynamic’, based on molec-
ular dynamics or Monte-Carlo-like densification procedures (e.g. Woodcock 1976),
are all kinetics-determined, i.e. they contain the densification rate as an arbitrary
parameter; discouragingly, sufficiently slow densification leads to complete or partial
crystallization, as discussed by Zinchenko (1994b). The inadequacy of these methods
for simulating a packing of a granular material is also due to the fact that they were
not aimed at preparing a mechanically equilibrium network. On the other hand, in
granular media mechanics, there have been a large number of works using a dynamic,
discrete element method (e.g. Cundall & Strack 1979; Zhang & Cundall 1986; Bar-
bosa & Ghaboussi 1990, 1992; Dobry & Ng 1992 and numerous references therein);
recently, a quasi-static approach, which is more efficient for equilibrium problems,
has been developed (Goddard et al . 1993, 1994; Bagi 1993; Bojtár & Bagi 1993). In
these methods, particles are assumed to have some compliance, and different contact
laws are used. Although this approach is very general and has a clear mechanical
sense, none of these works claimed to have solved a particular problem of random
close packing; the computations for ‘nearly rigid’ spheres are obviously very difficult
because of the numerical stiffness.

In the present work, we use a recent packing algorithm of Zinchenko (1994b) for
absolutely rigid spheres. In this algorithm, at the main stage of densification, parti-
cles swell while keeping the existing contacts (to avoid crystallization), until a new
contact occurs and one of the existing bonds is broken to continue the densification,
and so on. Most importantly, this purely geometric algorithm terminates when the
spheres reach a mechanical equilibrium under the action of normal contact reactions,
and results in a perfect contact network with the average coordination number of six.
To the best of our knowledge, this, kinetics-independent algorithm is the only one
that has demonstrated an unambiguous convergence, as N →∞, to the experimental
random close-packing density (about 0.637); besides, close agreement of the theoret-
ical and experimental microstructures (Zinchenko 1994b) validates the hypothesis
that the gravitational random close packings, far from the boundaries, can be accu-
rately modelled as isotropic. Although this algorithm is quite successful in simulating
random close packings, we should note, however, that in future conductivity calcu-
lations for friction–determined beds, the packing method of Goddard et al . (1993,
1994), or similar methods for ‘nearly rigid’ spheres, may have no alternative.

As for the solution of the multiparticle boundary-value problems, there have been
generally successful conductivity simulations for concentrated suspensions of spheres,
using multipole expansions (Sangani & Yao 1988), a random walker method (Kim &
Torquato 1991) and an approximate Stokesian dynamics-like approach (Bonnecaze
& Brady 1990, 1991). A unique feature of the random-walker method is its applica-
bility, in principle, to an arbitrary microstructure, which was demonstrated by the
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conductivity simulations for random dispersions of aligned spheroids and of freely
overlapping spheres (Kim & Torquato 1992, 1993). Granular materials, however,
present a very difficult case, even for γ ∼ 102 (let alone more interesting values
γ ∼ 103). Indeed, the conductivity in this case is sensitive to the details of the solu-
tion in the near-contact regions and, to attain a reasonable accuracy, a walker should
spend considerable ‘time’ there, both inside and outside the inclusions. Instead, a
random-walker is trapped in a single inclusion, with a very small probability p1 ∼ 1/γ
(Kim & Torquato 1991) of jumping into the interparticle space, once it has reached
the interface. In the same case, the direct multipole method also meets severe conver-
gence difficulties. The dipole and quadrupole formulations of the Stokesian dynam-
ics approach were found to give considerably different results in the special case of
highly concentrated random suspensions of superconducting spheres (Bonnecaze &
Brady 1991, fig. 4a), and, from their comparison with the random-walker calculations
of Kim & Torquato (1991), it is hard to decide which of the two approximations,
dipole or quadrupole, would be better in the relevant case of random close packings
with large, but finite γ. It is likely that, to remove this ambiguity and obtain good
convergence, many more multipoles would be required, even with exact two-body
interactions included, which is computationally very difficult for N � 1 using the
Stokesian dynamics approach. For all the above reasons, granular materials, in con-
trast to suspensions, present a quite new simulation problem that requires a novel
approach. Zinchenko (1994a) has newly developed a special, economical multipole
technique to consider conduction through a multiparticle system of spheres at arbi-
trary γ. This method, with the convergence to the exact solution, is based on the idea
that only the interaction of low-order harmonics is long-ranged to construct an ‘eco-
nomical truncation’, and also uses rotational transformations of spherical harmonics
by Wigner functions to considerably optimize the ‘near-field’ summations and effec-
tively include multipoles of very high order, when necessary. This method is suitable
for calculating the effective conductivities of relatively large random close packings
with point contacts and small-to-moderately large γ (§ 6). However, when both γ and
N are large, even this algorithm, orders-of-magnitude faster than traditional mul-
tipole techniques, becomes prohibitively expensive; besides, it does not include, in
principle, the possibility of particle deformations, nor do the solutions of Sangani &
Yao (1988) and Bonnecaze & Brady (1990, 1991). In the present work, we combine
the most efficient elements of Zinchenko’s algorithm with the method of matched
asymptotic expansions to develop a novel, highly accurate asymptotic algorithm for
γ � 1 and small contact deformations. The idea of considering deformation as a
small, but singular perturbation and of using matched asymptotic expansions has
proved fruitful in two-particle and two-drop problems (Davis et al . 1986; Yiantsios &
Davis 1990, 1991). The present solution seems to be the first application of matched
asymptotic expansions to a random multiparticle system.

The problems of determining effective transport coefficients (thermal or electri-
cal conductivity, dielectric constant, magnetic permeability) are all mathematically
equivalent, if we neglect specific mechanisms like thermal radiation (which is essential
only at very high temperatures); for definiteness, thermal conduction is considered
herein. In § 2 a, an expression for the local flux between two highly conducting spheres
in point contact is derived. This problem was first studied numerically by Batchelor
& O’Brien (1977), but we find a more attractive, analytical solution, capable of bet-
ter accuracy. This solution (which may have additional applications) is used in the
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boundary-integral calculations of § 2 b, to obtain a complete description of the local
thermal flux between two particles with a small contact spot, in addition to a few
numerical results of Batchelor & O’Brien. In § 3, a central part of the paper, a rigor-
ous asymptotic strategy for the solution of the boundary-value problem is described.
We neglect the O(γ−1)-corrections due to the particle temperature non-uniformity in
the outer region, far from contacts, but take ln γ as a finite parameter (which is com-
putationally very efficient), and so the outer particle temperatures are unknown and
coupled to the near-contact solutions (§ 2) through matching. The outer multiparti-
cle problem, for superconducting spheres at different temperatures in point contact,
is well-posed, but singular, and cannot be solved by multipole techniques. We show,
however, how to reduce this problem, with a very small error, to conduction through
a system of non-touching superconducting spheres of slightly contracted radius with
possible heat sources/sinks inside; original finite particle conductivity and elasticity
are effectively accounted for in the ‘heat-transfer coefficients’ between neighbouring
superconductors. This new problem is efficiently solved by Zinchenko’s (1994a) eco-
nomical multipole technique, with some new features (§ 5); making then the artificial
gap ε arbitrarily small, we approach the solution of the initial, singular outer prob-
lem. It turns out that, to achieve high accuracy, ε does not have to be very small,
and so our multipole expansions remain reasonably fast-converging. In § 4, we dis-
cuss Zinchenko’s (1994b) packing algorithm and extend his calculations, to prepare
random close packings with N 6 200 and perfect contactness and also find contact
deformations, as a perturbation. Conductivity calculations are presented in § 6. In
the absence of deformations, a comparison is made with the exact, but computa-
tionally very intensive, calculations for several small to moderately large packings,
with γ up to several hundred, to demonstrate a high accuracy of our asymptotic
algorithm in the whole range γ > 100; it is also shown that an alternative approach,
an expansion in inverse powers of ln γ, would be very inefficient. For a granular
material with contact deformations, for which there seems to be no prospect of
exact results, the non-dimensional effective conductivity, f∗ = Λ∗/Λe, is calculated
by the asymptotic algorithm as a universal function of γ and the elastic parameter
Π = [〈p〉(1− ν2)/E]1/3 (with 〈p〉 being the average pressure in the material) in the
whole range γ = O(102–103) of practical interest, using N 6 200 and configurational
averaging. These calculations are complemented by the exact values of f∗(γ) for a
material with point contacts and γ < 100. The simplest case of conduction through
a random close packing in ‘vacuum environment’ is also considered. The statistical
and finite-size errors are analysed and found to be very small. In § 7, we comment
on the relation of our theory to the experimental data.

The calculations have been performed mainly on an IBM AIX R/6000 workstation.

2. Local flux between two touching highly conducting spheres

(a) The case of point contacts

We are first interested in the expression for the local thermal flux between two
touching, identical spherical particles with surfaces Sα and Sβ , radius a, and high
particle-to-medium conductivity ratio γ, to be used in our scheme of matched asymp-
totic expansions. The particle temperatures Tα and Tβ , far from the contact point,
considered uniform due to γ � 1, are assumed to be given. This local problem was
first addressed in Batchelor & O’Brien (1977) by a boundary integral analysis. For
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T = Tα

T = Tβ

T = T+

T = T
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z
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0
αβ

2
a

Figure 1. On the calculation of the local thermal flux between two nearly touching highly
conducting spheres.

the purposes of the present work, their results are summarized briefly below, and a
novel, analytical approach, capable of a higher accuracy, is developed.

It is convenient to consider first the case of slightly separated spheres, with a
minimum gap thickness hαβ = εαβa, and then take the limit εαβ → 0. Let (r, z) be
a cylindrical coordinate system with the origin at the gap midpoint and (x, y) be
Cartesian coordinates in the midplane z = 0 (figure 1). Locally, the heat conducted in
a particle spreads out in an effectively semi-infinite medium, which allows boundary
integral representations for the temperature distributions T+(x, y) and T−(x, y) on
Sα and Sβ , respectively, in the near-contact region, e.g.

T+(x, y) = Tα +
1

2πγ

∫ ∞
−∞

∫ ∞
−∞

1
{(x′ − x)2 + (y′ − y)2}1/2

∂T e

∂n
(x′, y′) dx′dy′, (2.1)

where ∂T e/∂n is the derivative on Sα in the direction of the outward normal n,
with the index e marking the values related to the continuous phase. This normal
derivative can be approximated as (T−−T+)/(hαβ+r2/a) from the assumption that
the temperature varies approximately linearly across the gap. Using the symmetry
properties,

T+(x, y)− Tα = Tβ − T−(x, y) = 1
2(Tβ − Tα)f (2.2)

yields the boundary integral equation for the function f(x, y):

f(x, y) =
1
πγ

∫ ∞
−∞

∫ ∞
−∞

1− f(x′, y′)
(hαβ + r′2/a)

dx′dy′

{(x− x′)2 + (y′ − y)2}1/2 . (2.3)

Since the solution is axisymmetric, (2.3) can be transformed to (Batchelor &
O’Brien 1977)

f(σ) =
∫ ∞

0

1− f(σ′)
λ+ σ′2

I

(
σ′

σ

)
dσ′, (2.4)

where

I

(
σ′

σ

)
=

1
π

∫ 2π

0

σ′ dφ
(σ′2 + σ2 − 2σσ′ cosφ)1/2 =

4σ′

π(σ + σ′)
K

(
4σ′σ

(σ′ + σ)2

)
, (2.5)
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K is the complete elliptic integral of the first kind, and the dimensionless quantities
σ and λ are defined as

σ = γr/a, λ = γ2εαβ. (2.6)

The heat flux
2πΛe(Tα − Tβ)

∫ r0

0

1− f
hαβ + r2/a

r dr (2.7)

through a circular portion Dαβ of Sα (shadowed in figure 1), with the cut-off radius
r0 in the region aε

1/2
αβ � r0 � a of overlapping with the outer solution (§ 3), can

be written as
πΛea(Tα − Tβ)[ln r2

0/a
2 + ln ε−1

αβ − P (λ) + o(1)], (2.8)

where
P (λ) =

∫ ∞
0

2f(σ)σdσ
λ+ σ2 . (2.9)

The convergence of the integral (2.9) follows from the asymptotics (Batchelor &
O’Brien 1977) f(σ) ∼ 2 lnσ/σ at σ →∞.

Finally, the asymptotics of P (λ) in the necessary limit λ→ 0 of touching spheres
was found to be

P (λ) ∼ lnλ−1 + 3.9 + 0.1λ, (2.10)

where the coefficients 3.9 and 0.1 were estimated by Batchelor & O’Brien from the
numerical solution of (2.4) at λ � 1. The coefficient 3.9 is not accurate enough for
the purposes of the present work (in particular, for the comparison of exact and
asymptotic conductivity simulations undertaken in § 6), and the accuracy cannot
be improved easily by the numerical solution of (2.4), because the integrals (2.4)
and (2.9) are very slowly (and monotonically) convergent. Instead, we have found a
surprisingly simple analytical solution, as described below.

Let ξ, η be bispherical coordinates defined as

z =
c sinh η

cosh η − µ, ρ =
c sin ξ

cosh η − µ, µ = cos ξ, 0 6 ξ 6 π. (2.11)

The spheres Sα and Sβ become coordinate surfaces η = η0 and η = −η0, respectively,
if the parameters c, η0 > 0 are determined from

cosh η0 = 1 + 1
2εαβ, c = a sinh η0. (2.12)

Any regular harmonic function inside the sphere Sα can be written in the form
(Morse & Feshbach 1953)

(cosh η − µ)1/2
∞∑
n=0

Ane−(n+1/2)ηPn(µ), (2.13)

where Pn(µ) is the Legendre polynomial of degree n and An are unknown coefficients.
Since only the local analysis for εαβ � 1 is of interest, the relations (2.11) can be
simplified in the near-contact region z = O(εαβa), r = O(ε1/2αβ a):

z =
aε

1/2
αβ η

1− µ , r =
aε

1/2
αβ sin ξ
1− µ , (2.14)

taking into account that η0 ≈ ε1/2αβ .
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Accordingly, the simplified form of (2.13) can be used to represent the temperature
perturbation T − Tα inside Sα in the near-contact region

T ′ − Tα = (1− µ)1/2
∞∑
n=0

An exp
[
−(n+ 1/2)(1− µ)z

aε
1/2
αβ

]
Pn(µ), (2.15)

with the prime marking the values related to the disperse phase. The normal com-
ponent of the flux density on Sα can be derived from (2.15),

−Λ′ ∂T
′

∂n

∣∣∣∣
Sα

≈ −(1− µ)3/2

aε
1/2
αβ

Λ′
∞∑
n=0

An(n+ 1
2)Pn(µ). (2.16)

On the other hand, this flux density can be estimated from an approximately linear
behaviour of T e across the gap and the relations (2.2) as

Λe(Tα − Tβ)(1− f)/(hαβ + r2/a). (2.17)

Equation (2.15) applied to Sα and the definition (2.2) yield

(Tβ − Tα)f ≈ 2(1− µ)1/2
∞∑
n=0

AnPn(µ). (2.18)

Using (2.18), the identity

1 =
√

2(1− µ)
∞∑
n=0

Pn(µ) (2.19)

and the near-contact approximation

hαβ +
r2

a
≈ 2εαβa

1− µ , (2.20)

the flux density (2.17) can be written as

Λe(1− µ)3/2

2εαβa

∞∑
n=0

[
√

2(Tα − Tβ) + 2An]Pn(µ). (2.21)

Comparing (2.16) and (2.21) yields a simple equation for An, resulting in the
analytical form for f(σ):

f(σ) =
√

2(1− µ)
∞∑
n=0

Pn(µ)
1 + (n+ 1

2)
√
λ
, σ =

[
λ(1 + µ)

1− µ
]1/2

. (2.22)

The function (2.9),

P (λ) =
∫ 1

−1

f(σ) dµ
1− µ (2.23)

can be obtained by termwise integration of (2.22), using (2.19) and the orthogonality
properties of the Legendre polynomials,

P (λ) = 4
∞∑
n=0

1
(2n+ 1)[1 + (n+ 1

2)
√
λ]
. (2.24)
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Figure 2. On the calculation of the local thermal flux between two touching, nearly rigid
highly conducting spheres.

Expanding each term of (2.24) into primitive fractions, we can express P (λ) via
the logarithmic derivative ψ(z) of the gamma function (Abramowitz & Stegun 1964),

P (λ) = 2
[
ψ

(
1
2

+
1√
λ

)
− ψ(1

2)
]
, (2.25)

where ψ(1
2) = −C − 2 ln 2 and C = 0.5772 . . . is the Euler constant. Using the

asymptotic form (Abramowitz & Stegun 1964)

ψ(z) ∼ ln z − 1
2z
− 1

12z2 for z →∞, (2.26)

we easily arrive at

P (λ) ∼ lnλ−1 + 3.9270 + 1
12λ+O(λ2) for λ→ 0, (2.27)

which compares well with the approximate result (2.10) of Batchelor & O’Brien.
Finally, (2.6), (2.8), and (2.27) yield the necessary expression for the local flux

between two touching highly conducting spheres:

πΛea(Tα − Tβ)
[
ln
r2
0

a2 + ln γ2 − 3.927
]
. (2.28)

(b) Two spheres with a small contact spot

If the spherical particles of surfaces Sα and Sβ are pressed together to form a small
circular contact spot of radius ραβ � a (figure 2), then the integral equation (2.4) is
modified to (Batchelor & O’Brien 1977)

f(η) = −
∫ 1

0
g(η′)I

(
η′

η

)
dη′ +

1
ξ

∫ ∞
1

1− f(η′)
L(η′)

I

(
η′

η

)
dη′, (2.29)
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where η = r/ραβ, η′ = r′/ραβ, ξ = γραβ/a,

g(η) =
ραβ

(Tα − Tβ)
∂T ′

∂n
(r) (2.30)

is the non-dimensional normal temperature gradient at the circle of contact and

L(η) =
2
π
{(η2 − 1)1/2 + (η2 − 2) arctan(η2 − 1)1/2} (2.31)

is the thickness of the matrix layer scaled with ρ2
αβ/a (see figure 2) and provided

by the elasticity theory. The equation (2.29) is complemented by the temperature
continuity condition T+ = T− at the circle of contact, which is equivalent to

f(η) = 1 for 0 6 η 6 1. (2.32)

A combination of (2.29) and (2.32) yields a system of equations that can be solved
numerically to determine g(η) for 0 6 η 6 1 and f(η) for η > 1.

The flux through an extended circular portion Dαβ of Sα (shadowed in figure 2),
with the cut-off radius r0 in the region of overlapping with the outer solution (§ 3),
can be represented as

πΛea(Tα − Tβ)
[
ln
r2
0

a2 + ln γ2 − 3.927 +Hc(ξ) + ∆Hm(ξ) + o(1)
]
, (2.33)

where

Hc(ξ) = −2ξ
∫ 1

0
g(η)η dη (2.34)

is the contact spot contribution, and

∆Hm(ξ) = 2
∫ ∞

1

{
1− f(η)
L(η)

− 1− f0(ξη)
η2

}
η dη − 2

∫ 1

0

1− f0(ξη)
η

dη (2.35)

is the difference between the dimensionless flux across the matrix layer and the total
flux between particles in point contact. Here f0(σ) is the solution of (2.4) at λ→ 0.
The numerical calculations of Batchelor & O’Brien (1977) for ξ = 10−2, 10−1, 1, 10,
and 100 demonstrate the qualitative behaviour of Hc(ξ) and ∆Hm(ξ). However, it
is not easy to use these limited data for calculating Hc(ξ) + ∆Hm(ξ) at arbitrary ξ,
which is necessary in our conductivity simulations (§ 6), because, for example, the
variation of Hc(ξ) in the important range 1 6 ξ 6 102 is nearly three orders of
magnitude. For this reason, we have extended their calculations, using a somewhat
different technique, to get complete information about Hc(ξ) + ∆Hm(ξ).

As noted by Batchelor & O’Brien, the difference f(η)−f0(ξη) between the solutions
for deformed and non-deformed particles decays at η → ∞ much faster than f(η)
does. So, using (2.4) at λ = 0, we replace (2.29) and (2.32) by the system

1− φ(η)L(η) =
1
ξ

∫ ∞
1

[
φ(η′)− 1− f0(ξη′)

η′2

]
I

(
η′

η

)
dη′

−
∫ 1

0
g1(η′)I

(
η′

η

)
dη′ + f0(ξη) (for 0 < η <∞), (2.36 a)

φ(η) = 0 (for η 6 1) (2.36 b)
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for the unknowns

φ(η) =
1− f(η)
L(η)

, g1(η) = g(η) +
1− f0(ξη)

ξη2 , (2.37)

with improved convergence at η →∞. Instead of a less accurate numerical solution
of (2.4) at λ → 0, we use for f0(σ) analytical expressions derived from (2.22) at
λ → 0, σ fixed. In this case, µ ≈ 1 and only large n contribute to (2.22). Using
the asymptotic relation between Pn(x) and the Bessel function J0(x) (10.14(6) of
Bateman & Erdelyi 1953),

Pn(1− δ) ≈ J0(n
√

2δ) (δ → 0, n→∞, n√δ = O(1)), (2.38)

and proceeding in (2.22) from summation to integration, we have

f0(σ) =
∫ ∞

0

J0(t) dt
1 + 1

2σt
, (2.39)

or, using integration by parts, a better convergent integral

f0(σ) =
∫ ∞

0

J1(t)
t

(1 + σt)
(1 + 1

2σt)
2

dt. (2.40)

The form (2.40), however, is inefficient for small σ. Using

J0(t) =
(

1
t

d
dt

)n
[tnJn(t)], (2.41)

we can generalize (2.40),

f0(σ) = (−1)n
∫ ∞

0
tnJn(t) dt

(
d
dt

1
t

)n 1
1 + 1

2σt
(2.42)

and easily calculate all the derivatives f (k)
0 (0) from (2.42). In this manner, the asymp-

totic expansion is found,

f0(σ) ∼
∞∑
m=0

(−1)m[(2m− 1)!!]2(1
2σ)2m, σ → 0. (2.43)

Finally, the divergent asymptotic series (2.43) is transformed into a convergent,
computer-generated continued fraction

a0/(1 + a1y/(1 + · · · (2.44)

(where y = (σ/2)2), to calculate f0(σ) for σ < 0.35 (with 35 terms providing at least
5-digit accuracy for 1− f0(σ)). For σ > 0.35, direct integration (2.40) is used.

The logarithmic singularity in the kernel I(η′/η) is subtracted and accounted for
analytically, as usual. The remaining integrals in (2.36 a) are approximated to the
second order on uniform meshes after the transformations to new variables t and τ :

t = 1− (1− η)1/2 for 0 < η < 1, τ = [η(η − 1)]1/4 for η > 1, (2.45)

with necessary resolutions in the edge region η ≈ 1. Up to 400 nodes in each of
the two segments were used, with the cut-off distance ηmax in (2.36 a) up to 400,
and the system for unknowns was solved by Gauss elimination (an iterative solu-
tion was found to be unsuccessful). Our calculations of Hc(ξ) and ∆Hm(ξ) are in
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Figure 3. The contact spot function ∆(ξ).

Figure 4. The contact spot function Φ(ξ).

Tα
TβTβ

Figure 5. Two-dimensional sketch of a random, triply periodic contact network of spheres.
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Table 1. The values of ∆(ξ)

(The estimated error in ∆(ξ) does not exceed 0.1%.)

ξ = 3.935 4.067 4.204 4.345 4.491 4.641 4.797 4.958 5.124
1.288 1.322 1.356 1.389 1.422 1.455 1.487 1.518 1.550

ξ = 5.296 5.474 5.658 6.044 6.457 6.897 7.368 8.135 9.283
1.580 1.610 1.640 1.698 1.755 1.809 1.862 1.939 2.034

ξ = 10.594 12.495 14.738 17.966 21.901 26.699 32.547 39.676 48.367
2.126 2.229 2.323 2.424 2.513 2.592 2.662 2.723 2.776

ξ = 58.962 71.877 87.622 106.81 130.21 158.73 193.50 ξ →∞
2.822 2.862 2.896 2.93 2.95 2.97 2.99 ≈ 3

Table 2. The values of Φ(ξ)

(These values of Φ(ξ) are accurate to within 3% for ξ < 0.254 and 1.3–0.12% for 0.3 < ξ < 4;
the absolute error of ξ2Φ(ξ) is within 0.0013 in the whole range of ξ.)

ξ → 0 ξ = 0.101 0.150 0.208 0.254 0.300 0.403 0.508 0.599
≈ 0.17 0.16 0.16 0.15 0.15 0.149 0.143 0.137 0.133

ξ = 0.707 0.807 0.921 1.017 1.199 1.414 1.614 1.8417 2.0334
0.128 0.124 0.120 0.117 0.111 0.106 0.101 0.0961 0.0924

ξ = 2.2451 2.3983 2.6480 2.8287 3.0218 3.2280 3.4483
0.0888 0.0863 0.0826 0.0801 0.0777 0.0752 0.0728

ξ = 3.6837 3.9351
0.0704 0.0680

general agreement with those of Batchelor & O’Brien (1977) for ξ = 10−2, 10−1, 1,
10, and 100, although their figure 5 does not allow for an exact comparison. They
found considerable convergence difficulties in calculating Hc and ∆Hm; however, our
computations show that the sum Hc +∆Hm, the only quantity of interest, converges
much better than Hc and ∆Hm. According to Batchelor & O’Brien, Hc ∼ 2ξ/π and
∆Hm ∼ −2 ln ξ at ξ → ∞, while Hc, ∆Hm = O(ξ2) for ξ → 0. So, it is convenient
to define new functions ∆ and Φ,

Hc(ξ) + ∆Hm(ξ) =
2ξ
π
− 2 ln ξ +∆(ξ) = ξ2Φ(ξ), (2.46)

the first one being slowly varying for ξ > 4 (see table 1 and figure 3), the second
one for ξ < 4 (table 2 and figure 4). So, unlike Hc + ∆Hm, both functions ∆ and Φ
can be easily interpolated, thus providing accurate values of the local flux (2.33) for
arbitrary ξ.

3. Matched asymptotic expansion strategy for
conductivity simulations

It follows from (2.33) that, under most practical conditions (γραβ/a 6 O(lnα2)),
the flux through near-contact areas is only logarithmically large compared to that
through the outer region (far from contacts), and so the complicated multiparticle
boundary-value problem for the outer region also has to be considered. To succeed,
we will use the concepts of matched asymptotic expansions, although our method
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will remain heavily numerical. Consider a basic system of particles with surfaces
S1, . . . , SN whose centres x1, . . . ,xN are in a cubic cell V (of unit side, for simplicity),
with triply periodic continuation into all space. As usual in simulations of locally
homogeneous systems, periodic boundaries are mandatory to promote convergence
N → ∞. The distributions of contact spot radii ραβ are identical in all replicas
of the basic periodic cell V (the calculation of ραβ is considered in § 4), while the
temperature field has the form

T (x) = K · x+ T ∗(x), (3.1)

where T ∗(x) is triply periodic and the average temperature gradient K is given.
When γ � 1 and ραβ/a� 1, there are two characteristic regions. Far from the con-
tacts (outer region), the particles may be assumed to be spherical, of unperturbed
radius a, having uniform temperatures (T1, . . . , TN in the basic cell V ) and forming
a random close packing with point contacts (see figure 5 as a two-dimensional illus-
tration). Near the contacts (inner regions), the particle temperatures have significant
spatial variations, and finite particle deformations may also have substantial effects.

A further difficulty is that the outer temperatures T1, . . . , TN are unknown and
coupled to the behaviour of the solution in the inner regions, via the condition of
zero net flux through each particle. To derive the system of equations for T1, . . . , TN ,
consider for each non-deformed sphere S0

α(1 6 α 6 N) a set Aα of neighbours, i.e.
β ∈ Aα(1 6 β 6 N), if either S0

β or its nearest periodic image centred at xβ + kαβ
(where kαβ is a suitable integer displacement vector or zero) is in contact with
S0
α. For any given T1, . . . , TN , the outer thermal boundary-value problem is well-

posed (as can be seen from the solution for two touching superconducting spheres at
different temperatures T1, T2 in tangent-sphere coordinates), but the flux through
any sphere S0

α, calculated from the outer solution, diverges logarithmically due to
the near-contact behaviour

∂T e

∂n
(x)|S0

α
∼ a(T̃β − Tα)
|x− xcαβ|2

, x→ xcαβ (3.2)

(see (4.2) of Batchelor & O’Brien (1977) at h → 0), where T̃β = Tβ + K · kαβ is
the neighbour temperature and xcαβ is the contact point. A proper way to represent
the outer solution contribution to the flux through Sα is to cut off small spherical
segments D0

αβ of radius r0 � a (similar to that shown in figure 2) around the contact
points with all the neighbours and write the flux through the remaining part of S0

α

as

Qα − Λea
∑
β∈Aα

(T̃β − Tα)
∫
S0
α\D0

αβ

dS
|x− xcαβ|2

+ o(1), (3.3)

where the first term (the ‘flux defect’),

Qα = −Λe
∫
S0
α

[
∂T e

∂n
(x)−

∑
β∈Aα

a(T̃β − Tα)
|x− xcαβ|2

]
dS, (3.4)

is made a convergent integral over the whole surface S0
α by subtracting the sum of

the contact point contributions from the integrand, and the second term accounts
for the logarithmic singularity when r0/a → 0. The remainder, o(1), tends to zero
as r0/a→ 0 and is insignificant.
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When (3.3) is added to the inner solution contributions (2.33) (with Tβ replaced
by T̃β), the logarithmic singularity in r0/a cancels, as expected, since

lim
r0/a→0

[
1
π

∫
S0
α\D0

αβ

dS
|x− xcαβ|2

+ ln
(
r0

a

)2]
= 2 ln 2 (3.5)

and, irrespective of the cut-off radius r0, the heat balance (zero net flux) for particle
α takes the form

Qα − Λeπa
∑
β∈Aα

(T̃β − Tα)[2 ln 2 + Ψαβ] = 0, (3.6)

where, for brevity,

Ψαβ = ln γ2 − 3.927 +Hc

(
γραβ
a

)
+ ∆Hm

(
γραβ
a

)
. (3.7)

Matched asymptotic expansions can be also used to represent the average thermal
flux 〈q〉 through a granular material, starting from the exact relation of Batchelor &
O’Brien

〈q〉 = −Λe
[
K +

(1− γ−1)
V

N∑
α=1

∫
Sα

(x− xα)
∂T e

∂n
dS
]

(3.8)

(V is the cell volume, unity in our case), where xα is arbitrary and can be taken as
the centre of the non-deformed sphere S0

α. In the inner regions, x−xα can be replaced
by anαβ (where nαβ is the unit centre-to-centre director from S0

α to its neighbour)
with a small relative error in the integral (3.8), on the order O(r2

0/a
2). Thus, the

inner solution contribution to the integral (3.8) can be found as the weighted sum of
expressions (2.33) (with T̃β instead of Tβ).

The outer solution contribution is similar to (3.3)–(3.4), with an additional factor
an in the integrands. Summing these contributions and using the relation

lim
r0/a→0

[
1
π

∫
S0
α\D0

αβ

n dS
|x− xcαβ|2

+ nαβ ln
(
r0

a

)2]
= 2(ln 2− 1)nαβ, (3.9)

we can approximate the integral (3.8) as∫
Sα

(x− xα)
∂T e

∂n
dS ≈Wα + πa2

∑
β∈Aα

(T̃β − Tα)[2 ln 2− 2 + Ψαβ]nαβ, (3.10)

where

Wα = a

∫
S0
α

[
∂T e

∂n
(x)−

∑
β∈Aα

a(T̃β − Tα)
|x− xcαβ|2

]
n dS, (3.11)

the ‘thermal dipole defect’, is another convergent integral determined by the outer
solution.

In principle, the relations (3.4) and (3.6) for α = 1, . . . , N , together with (3.1)
and the Laplace equation ∇2T = 0 outside the spheres, make the outer problem
uniquely soluble, to within an insignificant additive constant in T e(x) and T1, . . . , TN .
However, even numerically, it is extremely difficult to find a satisfactory solution for
this singular problem, because the multipole method in this case is divergent. The
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central idea of our approach is to slightly contract the radius of all spheres in the
outer geometry from a to â = 2a/(ε+ 2), where ε� 1, thus making a small artificial
gap εâ between formerly contacting neighbours, and consider thermal conduction
through this system of non-touching superconducting spheres Ŝα in the matrix, with
the same (yet unknown) boundary temperatures T1, . . . , TN , as in (3.4) and (3.6) for
touching spheres. On doing this, we can use, with a very small error as ε → 0, the
difference between the net (convergent!) flux through the sphere Ŝα and the sum of
the gap contributions from all its former neighbours to calculate the flux defect for
touching spheres, the most difficult first term in (3.6). (As a further motivation of this
idea, a curious analogy with two-sphere Stokesian hydrodynamics in close approach
(Cooley & O’Neill 1969) can be mentioned: the O(1)-terms in the singular resistance
coefficients, as ε→ 0, can be calculated by using the outer solution for two touching
spheres but, alternatively, and with an error of O(ε ln ε), as the difference between
the exact solution for non-touching spheres and the sum of the singular terms.)

To realize this approach, we can again apply matched asymptotic expansions to
this new system of non-touching superconducting spheres and represent the flux
through Ŝα as the sum of the inner and outer solution contributions. A typical inner
solution contribution is obtained from (2.8), with P = 0 and a replaced by â:

πΛeâ(Tα − T̃β)
[
ln
r2
0

a2 + ln ε−1 + o(1)
]
. (3.12)

The outer solution contribution, to the leading order of approximation, is the same
as for touching superconducting spheres (3.3)–(3.4). Thus, for ε� 1,

−Λe
∫
Ŝα

∂T e

∂n
dS = Qα − Λeπa

∑
β∈Aα

(T̃β − Tα)
[
2 ln 2 +

â

a
ln ε−1

]
+ o(1). (3.13)

The flux defect Qα can be excluded from (3.6) and (3.13), resulting in∫
Ŝα

∂T e

∂n
dS +

∑
β∈Aα

Hαβ(T̃β − Tα) ≈ 0, (3.14)

with

Hαβ = πa

(
Ψαβ − â

a
ln ε−1

)
. (3.15)

Similarly, the thermal dipole in the system of non-touching superconducting spheres
can be approximated for ε� 1 as∫
Ŝα

(x− xα)
∂T e

∂n
dS

= Wα + πa2
∑
β∈Aα

(T̃β − Tα)
[
2 ln 2− 2 +

(
â

a

)2

ln ε−1
]
nαβ + o(1), (3.16)

and, upon exclusion of Wα from (3.10) and (3.16), we have∫
Sα

(x− xα)
∂T e

∂n
dS ≈

∫
Ŝα

(x− xα)
∂T e

∂n
dS

+ πa2
∑
β∈Aα

(T̃β − Tα)
[
Ψαβ −

(
â

a

)2

ln ε−1
]
nαβ. (3.17)
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The error of the relations (3.14) and (3.17) is expected to be O(ε ln ε), since the
asymptotic analysis (Appendix A) of the standard potential problem for two isolated,
nearly touching superconducting spheres Ŝα and Ŝβ with temperature difference ∆T
shows that both the surface integrals∫

∂T e

∂n
dS,

∫
n
∂T e

∂n
dS (3.18)

over Ŝα or Ŝβ have the structure â∆T [c0 ln ε + c1 + O(ε ln ε)] at ε → 0, with some
constants c0, c1. The use of â/a instead of unity in (3.15) and (3.17) is not of principal
importance, but is believed to reduce the error of (3.14) and (3.17) (see Appendix A).

We can consider (3.14) as exact relations, making the boundary-value problem for
non-touching superconductors uniquely soluble (see below), to within an insignificant
additive constant, and use the solution to calculate 〈q〉 for the original problem
from (3.8) and (3.17) with an error O(ε ln ε), and then take the limit ε → 0. Thus,
(3.14) and (3.17) can be called the consistency conditions, since they relate the
asymptotic solution of the original problem for touching, highly conducting particles
with possible small contact deformations to the solution of the different problem
for non-touching, non-deformed superconducting spheres; finite particle conductivity
and elasticity are effectively accounted for in the ‘heat–transfer’ coefficients Hαβ.
Using Green’s theorem, one can easily prove that (3.14) is a well-posed problem
for Hαβ > 0, i.e. only for ε > 50.8/γ2 in the case ραβ = 0. However, Hαβ > 0
is a sufficient, but not necessary condition, and both our calculations (§ 6) and an
analytical solution of the model two-sphere problem (Appendix A) show that (3.14)
is a well-posed problem for all ε > 0, and so the necessary limit ε → 0 is rigorously
defined for every γ.

This is a very efficient procedure, since the progression exponent for the decay
of multipole coefficients in a system of nearly touching superconductors is 1 − √ε
(Zinchenko 1994a), not 1−O(ε), and so multipole expansions remain reasonably fast
converging even for small ε.

We note finally that the proposed approach to conductivity simulations in a gran-
ular material is, in fact, semi-asymptotic, i.e. we neglect the corrections like O(γ−1)
due to the temperature non-uniformity inside the inclusions in the outer solution, but
take ln γ as a finite parameter. As an alternative, an asymptotic expansion in inverse
powers of ln γ could be attempted, but this approach proves to be more difficult and
much less efficient (see § 6).

4. Random close packings and the calculation of contact deformations

The conductivity simulations by matched asymptotic expansions, as described in
the previous section, require computer–generated random close packings (RCP) of
non-deformed spheres S0

1 , . . . , S
0
N with triply periodic continuation into all space. To

this end, we used the algorithm of Zinchenko (1994b) and extended his calculations,
to prepare more RCP configurations with N 6 200 and perfect contactness and
also determine contact deformations by the perturbation analysis. The essence of
the algorithm is as follows. Let the system initially form a network with 3N − 3
independent contacts (and each sphere having at least three neighbours). Then the
geometric relations R2

αβ = (2a)2 (where Rαβ = xβ+kαβ−xα is the ‘minimal vector’
drawn from xα to the centre of the periodically replicated S0

β that is nearest to S0
α)
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for all independent contact pairs (αk, βk) (k = 1, . . . , 3N − 3) form 3N − 3 nonlinear
equations for 3N unknowns xα, yα, zα and, in principle, determine sphere positions as
unique functions of their radius a, to within an insignificant shift of the whole system
and particle permutation. The differentiation of the above geometric relations with
respect to a yields a system of differential equations of densification,

dxα

da
= Vα(x1, . . . ,xN , a), (4.1)

with Vα determined from

Rαk,βk · (Vβk − Vαk) = 4a for k = 1, . . . , 3N − 3, (4.2 a)
N∑
α=1

Vα = 0, (4.2 b)

which can be solved numerically, thus allowing particles to swell while keeping all
the existing contacts until a new contact k = 3N − 2 occurs. At that moment, the
addition of the new contact equation makes the system (4.2) for Vα overdetermined,
and one of the existing bonds with k = k∗ 6 3N−3 has to be broken to continue the
densification. To this end, we first calculate the extremal point (V ∗1 , . . . ,V

∗
N ) that

minimizes the function

F (V1, . . . ,VN ) =
3N−2∑
k=1

[Rαk,βk · (Vβk − Vαk)− 4a]2 (4.3)

by the solution of the linear system∑
β∈Aα

[4a−Rαβ · (V ∗β − V ∗α )]Rαβ = 0, α = 1, 2, . . . , N (4.4)

(where Aα is the set of neighbours of S0
α, as in § 3) and find the bond k = k∗

with maximum Rαk,βk · (V ∗βk − V ∗αk) to be excluded from (4.2), with the new bond
k = 3N − 2 added. It was rigorously proved (Zinchenko 1994b) that the separation
condition

Rαk∗ ,βk∗ · (Vβk∗ − Vαk∗ ) > 4a

is equivalent to
Rαk∗ ,βk∗ · (V ∗βk∗ − V ∗αk∗ ) > 4a,

and so, if the latter holds, the densification can be continued until a new contact
occurs, and so on. The algorithm terminates when, after a new contact formation,
Rαk,βk · (V ∗βk − V ∗αk)− 4a 6 0 for all k 6 3N − 2, and so no bond can be separated.
A modification of this scheme is used to prepare an initial network with 3N − 3
independent contacts from a random dilute system of non-touching spheres. Tech-
nical aspects of the algorithm, some of them complicated, are discussed in detail by
Zinchenko (1994b). This algorithm is essentially ‘static’, i.e. it contains no densifica-
tion rate da/dt, and non-crystallizing, due to the conservation of the contact network
in the course of densification. Both the random close-packing density and the radial
distribution function obtained by this algorithm were found to be in excellent agree-
ment with experimental data. The other geometric or thermodynamic packing codes
with periodic boundaries, as discussed by Zinchenko (1994b), are kinetics determined
and can provide any degree of crystallization for sufficiently slow densification.
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The Euler scheme used to integrate (4.1) never produces overlaps of bonded par-
ticles, but, conversely, makes them slightly non-touching during the bond lifetimes.
This latter, undesirable effect, however, can be made arbitrarily small by choosing
fine integration steps ∆a. In the present work, we used at least an order-of-magnitude
smaller integration steps than in Zinchenko (1994b) and prepared new RCP configu-
rations with almost perfect contacts for conductivity simulations (among two possi-
ble strategies of generating initial approximations V 0

α to Vα at the first densification
stage, discussed in § 2.4 of Zinchenko (1994b), the strategy with random numbers
was chosen to reduce difficulties at the ‘singular point’, more noticeable for small
∆a). Fifteen configurations were generated for N = 100 with packing density in the
range 0.619 6 c 6 0.639 and 10 configurations for N = 200 with 0.623 6 c 6 0.639;
for all the packings, the average gap between the spheres that should be in contact
is only about 5× 10−7a (several small packings with even better contacts were also
prepared for test purposes of § 6). It should be noted that very small integration
steps make the computations more expensive (on the average, it took about 25h
to prepare one random close packing with N = 200 on an IBM AIX RISC/6000
workstation) and also increase the dispersion of the final packings, so that more
configurations are required for averaging. However, the average packing densities
〈c〉 = 0.628 ± 0.002(N = 100) and 0.631 ± 0.002(N = 200) (compared to 0.629 and
0.633 for N = 100 and 200, respectively, in Zinchenko (1994b)) are again consis-
tent with the experimentally determined limit 0.637 at N →∞ by Scott & Kilgour
(1969). Once generated, these packings can be used in conductivity simulations for
all γ and the elastic parameters Π (see (4.9) below).

Most importantly, this isotropic, purely geometric algorithm terminates when the
spheres reach mechanical equilibrium under the action of normal contact forces.
Indeed, at random close packing, (4.4) can be written as equilibrium equations∑

β∈Aα
NαβRαβ = 0, for α = 1, . . . , N, (4.5)

where

Nαβ = −λ[Rαβ · (V ∗β − V ∗α )− 4a] (4.6)

are non-negative normal reactions and λ > 0 is an arbitrary parameter. In principle,
the system of 3N − 3 independent equations (4.5) determines 3N − 2 unknown
reactions Nαβ to within an arbitrary factor, but (4.6) is a convenient way to bypass
(4.5) and reduce the calculation of Nαβ to the solution of the self-adjoint, positive-
definite system (4.4) by conjugate gradient iterations. The system of reactions is
determined uniquely, if the average pressure 〈p〉 in the material is specified. Indeed,
the pressure 〈p〉, defined as −(P11 + P22 + P33)/3 (where Pij is the average stress
tensor) can be expressed via contact forces in a standard way

〈p〉 =
2a
3

3N−2∑
k=1

Nαk,βk (4.7)

(for unit periodic cell volume), thus determining λ.
These normal reactions between absolutely rigid spheres can be used to calcu-

late small contact deformations from Hertz theory (Landau & Lifshitz 1959), as a
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Figure 6. The distribution of contact spot radii ραβ in a random close packing of 100 spheres
with c = 0.627 in a periodic box, scaled with the average value 〈ραβ〉 for a given configuration.

geometric perturbation. Contact spot radii are given by

ραβ =
{

3(1− ν2)a
4E

Nαβ

}1/3

, (4.8)

where E and ν are the material Young’s modulus and the Poisson ratio, respectively.
According to (4.7)–(4.8), the dimensionless contact spot radii ραβ/a for a given
configuration are uniquely determined by the elastic parameter

Π =
{〈p〉(1− ν2)

E

}1/3

. (4.9)

Figure 6 and other calculations for random close packings with N = 100 and 200
demonstrate that the contact radius distribution is not close to uniform (despite the
1/3 exponent in (4.8)), the standard deviation of ραβ being about 30% of its mean
value 〈ραβ〉. The mean contact radius was found to be

〈ραβ〉 = 1.25aΠ, (4.10)

where 1.25 is the average over 10 random close packings with N = 200 (averaging
over 15 RCP configurations with N = 100 yields a close value 1.24).

It is very advantageous that the conductivity simulation strategy of § 3 requires
only random close packings of absolutely rigid spheres and that the small elasticity is
effectively accounted for in the ‘heat transfer coefficients’ Hαβ. If necessary for other
purposes, a small correction (on the order Π2a) to the outer geometry, compatible
with near-contact deformations, could be calculated by a perturbation analysis, as
follows. The application of an isotropic mechanical load to a random close packing
with periodic boundaries can be modelled as resulting from some swelling of particle
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radius (rather than from the periodic cell compression). Let, in the outer geometry,
the sphere centres be xα+δxα and their radius a+δa. The centre-to-centre distance
between neighbouring spheres becomes approximately 2(a+ δa)−2ρ2

αβ/a, where the
last term accounts for the contact compliance (see, for example, Batchelor & O’Brien
1977). Thus, we arrive at the linearized equations,

Rαk,βk · (δxβk − δxαk)− 4aδa+ 4ρ2
αk,βk

= 0 for k = 1, 2, . . . , 3N − 2. (4.11)

These 3N − 2 contact equations uniquely determine 3N + 1 perturbations δx1, . . . ,
δxN and δa, to within an insignificant vector constant added to all δxα. An efficient
numerical technique to solve (4.11) is the conjugate gradient method, as for (4.2)
(see Zinchenko 1994b).

Since the neighbouring spheres in our computer-generated packings are (very
slightly) non-touching, we prefer to modify (3.15) and (3.17) and use εαβ instead
of ε = 2(a− â)/â, where εαβ â is the actual gap between the spheres after the radius
contraction. A more serious problem is the existence of ‘near-neighbours’, besides
true (contacting) neighbours, in typical random close packings. For example, if all
pairs with Rαβ < 2.02a are qualified as neighbours, then the coordination number
(the average number of neighbours per particle) is typically about 6.6 (for N � 1),
compared to 6 − 4/N when only true neighbours are accounted for. These near-
neighbours can make the necessary values of ε too small to accurately achieve the
limit ε → 0 in the conductivity simulations, with unacceptably slow convergence of
the multipole expansions (§ 5,6). Fortunately, it has proved possible to overcome this
difficulty as follows. Fixing some small ε0max > 0, we define for each sphere S0

α a set
Bα of near-neighbours with Rαβ < (2 + ε0max)a, not including true neighbours. For
each near-neighbour, we subtract its main, logarithmic contribution from the flux
through sphere Ŝα in the system of slightly contracted superconductors, but also
add a compensating term for the original geometry of random close-packed spheres.
A similar manipulation is made with the thermal dipoles. Thus, (3.14) and (3.17)
are replaced with∫
Ŝα

∂T e

∂n
dS + πa

∑
β∈Aα

(
Ψαβ − â

a
ln ε−1

αβ

)
(T̃β − Tα)

+ πa
∑
β∈Bα

[
ln(ε0αβ )−1 − â

a
ln ε−1

αβ

]
(T̃β − Tα) = 0 (4.12)

and∫
Sα

(x− xα)
∂T e

∂n
dS ≈

∫
Ŝα

(x− xα)
∂T e

∂n
dS

+ πa2
∑
β∈Aα

(T̃β − Tα)
[
Ψαβ −

(
â

a

)2

ln ε−1
αβ

]
nαβ

+ πa2
∑
β∈Bα

(T̃β − Tα)
[
ln(ε0αβ)−1 −

(
â

a

)2

ln ε−1
αβ

]
nαβ,

(4.13)

where ε0αβa is the gap between the spheres prior to the radius contraction.
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While the first modification, εαβ instead of ε, seems almost insignificant (since
εαβ ≈ ε for β ∈ Aα and the values of ε � 5 × 10−7 used), the inclusion of near-
neighbours, as suggested in (4.12)–(4.13), has a drastic effect on the rate of conver-
gence ε → 0 in conductivity simulations (see § 6). The value ε0max = 0.01 was found
to be close to optimal for typical random close packings. It is important to stress
that the limiting result for ε → 0 is independent of ε0max, since the near-neighbour
contributions to (4.12)–(4.13) vanish, when â = a and εαβ = ε0αβ.

5. Solution of the boundary-value problem

The most difficult part of the conductivity simulations is the solution of the thermal
boundary-value problem (4.12) for slightly contracted superconducting spheres and
taking the limit ε → 0. A special, high resolution, economical multipole technique
has been recently developed by Zinchenko (1994a) to solve the problem of thermal
conduction through a large random system of N identical spheres with triply periodic
continuation into all space, arbitrary particle-to-medium conductivity ratio γ and
arbitrary volume fractions. The limiting case γ = ∞ of that solution obviously
corresponds to superconductors with zero net flux through each sphere. The present
boundary-value problem is new in that the flux through an individual sphere is non-
zero and satisfies (4.12), so additional zero-order harmonics should be included (see
(5.5)), but otherwise the solution can be constructed in a similar manner, as briefly
summarized below. Further details of this highly efficient, but somewhat lengthy
technique can be found in Zinchenko (1994a).

Let G(x) be the triply periodic Green function satisfying

∇2G(x) = −4π + 4π
∑
k

δ(x− k), k = (k1, k2, k3), (5.1)

where δ(x) is the δ-function and the symbol
∑

denotes the summation over all
integers k1, k2, k3 (the Cartesian axes are chosen so that the basic periodic cell V
is the unit cube [0, 1) × [0, 1) × [0, 1)). Using Green’s theorem, a harmonic, triply
periodic function T∗(x) = T (x)−K ·x can be represented outside the inclusions as

T e
∗ (x) = const.+

1
4π

N∑
β=1

∫
Ŝβ

[
G(y − x)

∂T e
∗

∂ny
− T∗(y)

∂G(y − x)
∂ny

]
dSy. (5.2)

The temperature uniformity on Ŝβ, Green’s theorem for the fields K ·y and G(y−x)
inside Ŝβ , and (5.2) yield

T e(x) = K · x+ C +
1

4π

N∑
β=1

∫
Ŝβ

G(y − x)
∂T e

∂ny
(y) dSy, (5.3)

where C is another insignificant constant. The next step is to associate with each
sphere Ŝα the local spherical coordinate system (r, θ, φ) so that

(x− xα)1 = r sin θ cosφ,
(x− xα)2 = r sin θ sinφ,
(x− xα)3 = r cos θ,

 (5.4)
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(here and henceforth the number indices of vectors denote their Cartesian compo-
nents) and a set of complex Fourier coefficients Uαn,m:

∂T e

∂n
(x)|Ŝα =

∞∑
n=0

n∑
m=−n

[π(2n+ 1)]1/2Uαn,mYnm(x− xα), (5.5)

with

Uαn,−m = (−1)mU
α

n,m (5.6)

and the overbar denoting complex conjugation. For a vector r = (r, θ, φ), the nor-
malized spherical harmonics are defined as

Ynm(r) =
[

(2n+ 1)(n−m)!
4π(n+m)!

]1/2

Pmn (cos θ) exp(imφ) (m > 0),

Ynm(r) = (−1)mY n,−m(r) (m 6 0),

 (5.7)

with Pmn being the associated Legendre function. To derive a set of equations for
Uαn,m from (5.3) and (5.5), the integrals

I =
∫
Ŝα

Y nm(x− xα) dΩx
∂

∂nx

∫
Ŝβ

G(y − x)Yνµ(y − xβ) dΩy (dΩ = dS/â2)

(5.8)

for all ν > 0 (the index ν not to be confused with the Poisson ratio) and n > 1 should
be evaluated. (Note that the equation for Uα0,0 is a consequence of the total zero flux
through all N spheres.) These integrals can be calculated in different ways, e.g. like
similar integrals in Zinchenko (1994a). A general lemma of Appendix B provides
probably the simplest way, as demonstrated below.

1. α 6= β. Using Green’s theorem, we have for n > 1

I =
n

â

∫
Ŝβ

Yνµ(y − xβ) dΩy
∫
Ŝα

G̃(x,y)Y nm(x− xα) dΩx, (5.9)

where

G̃(x,y) = G(y − x) + 2
3π(y − xβ)2 + 2

3π(x− xα)2 (5.10)

is a harmonic function of x and y. Using (B 1), the inner integral (5.9) for m > 0
can be written as

(2â)ν
[

4π
(2ν + 1)!

]1/2

Cn,m

[(
∂

∂x1
− i

∂

∂x2

)m(
∂

∂x3

)n−m
G(y−x)|x=xα + 4

3πδn,2δm,0

]
= (2â)ν

[
4π

(2ν + 1)!

]1/2

Cn,m

{
(−1)n

(
∂

∂y1
− i

∂

∂y2

)m(
∂

∂y3

)n−m
× [G̃(xα,y)− 2

3π|y − xβ |2] + 4
3πδn,2δm,0

}
, (5.11)

where

Cn,m =
1
2n

[
(2n)!

(n−m)!(n+m)!

]1/2

. (5.12)
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Expression (5.11) is a harmonic function of y for n > 1, and so the outer integral
(5.9) is also calculated using the lemma of Appendix B. The result is further simplified
by the identity (

∂

∂y1
+ i

∂

∂y2

)(
∂

∂y1
− i

∂

∂y2

)
f = − ∂2

∂y2
3
f, (5.13)

valid for any harmonic function f(y), to a form containing the derivative

(D1 ± iD2)|m−µ|Dν+n−|m−µ|
3 G(x),

(
Di =

∂

∂xi

)
at x = xβ − xα plus some simple additional terms.

2. α = β. In this case, the normal derivative in (5.8) is understood as the limiting
value from the continuous phase. Representing G(y − x) = −|y − x|−1 + g(y − x),
one can find the contribution of the first term to (5.8) using the relation (see (B 1)
and (B 3), or Hobson (1955))

lim
x→Ŝα

∂

∂nx

∫
Ŝα

Yνµ(y − xα)
|y − x| dΩy = − 4π(ν + 1)

(2ν + 1)â2Yνµ(x− xα) (5.14)

and the orthogonality of spherical harmonics. The contribution of g, a regular func-
tion of x and y inside Ŝα, is calculated exactly in the same manner, as the integrals
(5.8) for α 6= β.

Thus, we arrive at the system of equations for n > 1 and 0 6 m 6 n:

Uαn,m =
N∑
β=1

∞∑
ν=0

ν∑
µ=−ν

1
2(−1)ν+m+1Cn,mCn+ν,n−νCν,µS

µ−m
αβ,n+νU

β
ν,µ

+ 4
3πâ

3δn,1

N∑
β=1

Uβ1,m + δn,1

{
2K3, m = 0√

2(K1 − iK2), m = 1.
(5.15)

The coefficients Sµαβ,ν for α 6= β are defined as

Sµαβ,ν =
(−4â)ν+1

2[(2ν)!]1/2
[(D1 + iD2)µDν−µ

3 G(x)|x=xβ−xα + 4
3πδν,2δµ,0] (µ > 0),

Sµαβ,ν = (−1)µS−µαβ,ν (µ < 0).


(5.16)

For α = β, the relations (5.16) hold with G(x) replaced by G(x) + |x|−1.
In addition to (5.15), the integration of (5.3) over Ŝα yields the equations for

particle temperatures T1, . . . , TN . To this end, the double integrals (5.9) with n = 0
are calculated in a similar way, resulting in

2
â

(Tα − C −K · xα) + Uα0,0 =
N∑
β=1

∞∑
ν=0

ν∑
µ=−ν

(−1)ν+1

2ν+1 Cν,µS
µ
αβ,νU

β
ν,µ, (5.17)

where the right-hand side is a particular case of the first term in (5.15) for n = m = 0.
Finally, (5.15) and (5.17) are complemented by the equations (4.12) for

Uα0,0 =
1

2πâ2

∫
Ŝα

∂T e

∂n
dS (5.18)
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and, in principle, uniquely determine all Uαn,m and T1, . . . , TN (the insignificant con-
stant C in (5.17) can be set to zero).

The average flux 〈q〉 for the original problem can be found from (3.8) and (4.13),
with ∫

Ŝα

(x− xα)
∂T e

∂n
dS = 2πâ3(

√
2 ReUα1,1,−

√
2 ImUα1,1, U

α
1,0) (5.19)

in the Cartesian coordinates.
The first and obvious step in the numerical solution of (4.12), (5.15), and (5.17)

is the truncation

Uαn,m = 0 for n > k0, (5.20)

with some k0 � 1. For small ε, however, when k0 has to be quite large, and for
N � 1, the truncation (5.20) alone is extremely wasteful, since it does not take
into account that only the interaction of low-order harmonics in (5.15) and (5.17)
is long–ranged. A far more efficient approach of Zinchenko (1994a) used herein first
represents the coefficients Sµαβ,ν for all α 6= β in the form

Sµαβ,ν =
1

Cν,µ

(
4π

2ν + 1

)1/2( 2â
|Rαβ|

)ν+1

Yνµ(Rαβ) + (S′)µαβ,ν , (5.21)

with Sµαα,ν = (S′)µαα,ν by definition. It is known that the derivativesDνG(x) for ν > 3
can be calculated as if G(x) were represented by the formal sum −∑ |x+ k|−1, so
one can easily see from (5.16) and (B3) that, for ν > 3 (Zinchenko 1994a)

(S′)µαβ,ν =
1

Cν,µ

(
4π

2ν + 1

)1/2 ∑
k 6=0

(
2â

|Rαβ + k|
)ν+1

Yνµ(Rαβ + k) (5.22)

and the first term in (5.21) has a sense of the nearest image contribution to the
lattice sum Sµαβ,ν . The representation (5.21) splits the triple sum operator in (5.15)
and (5.17) acting on Uβν,µ into two, a near- and a far-field operator. The far-field
operator, with (S′)µαβ,ν instead of Sµαβ,ν , is fast converging, if there are at least
several spheres in the cell V , and has to be truncated by relatively small values
of n and ν. So does the near-field operator, except for close pairs |Rαβ| ≈ 2â,
when higher-order harmonics should be included. A systematic way to construct the
‘economical truncation’ (Zinchenko 1994a) is to introduce a norm in the space of
Uαn,m and estimate first the residual h due to the initial truncation (5.20) from the
rate of convergence of the exact solution Uαn,m at n → ∞ (which was proved to be
the same as if sphere Ŝα were interacting only with its nearest neighbour). In the
present case of superconducting spheres, a uniformly valid analytical form (derived
from (B 2) of Zinchenko (1994a)),[ n∑

m=−n
|Uαn,m|2

]1/2

= O[n−1/2(qα)n] for n→∞, (5.23)

with

qα = 1
2(ζα − (ζ2

α − 4)1/2), ζα =
1
â

min
β:β 6=α

|Rαβ|, (5.24)
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can be used to estimate h, instead of numerical solutions of two-particle problems
in Zinchenko (1994a) (besides, in our geometry, all qα ≈ 1 − √ε). Next, the bar-
rier functions k∗0(α, β), k∗∗0 (α, β) and `∗∗(α, β) are constructed to restrict, for every
β, the near-field summations by n, ν 6 k∗0(α, β) and the far-field summations by
n, ν 6 k∗∗0 (α, β) and n + ν 6 `∗∗(α, β), so that the residuals in the near- and far-
field operators after these additional truncations are still within O(h). The barrier
functions are calculated in exactly the same way as in Zinchenko (1994a) (with the
constants χ = 5 and χ = 1 for the near- and far-field economizations, as suggested in
§ 3 of that paper). The lattice sums (S′)µαβ,ν for the far-field operator are calculated in
the Ewald-like manner for small ν = 4–6 (relations (56)–(61) of Zinchenko (1994a))
and, when necessary, by direct summation (5.22) for higher ν, to an accuracy consis-
tent with the residual h of the initial truncation. For different k0, this construction
results in a one-parameter family of approximations, with the convergence to the
exact solution of the infinite system (4.12), (5.15), and (5.17), as k0 →∞, since k∗0 ,
k∗∗0 , `∗∗ →∞ and so all the terms in (5.15) and (5.17) are eventually included. At the
same time, with practically no loss of accuracy, this economical truncation provides
very large computer time savings in calculating the triple sum operator (5.15), (5.17)
for k0 � 1 and N � 1, compared to the initial truncation (5.20), since k∗∗0 � k0,
`∗∗ � 2k0 and also k∗0 � k0, except for a small portion of close pairs (|Rαβ| ≈ 2â)
with k∗0 ≈ k0.

Another principal idea (Zinchenko 1994a) is to use, without any new approxima-
tions, a special ‘rotational algorithm’ for calculating the near-field operator, instead
of direct summations (5.15) and (5.17). For any given β 6= α, the near-field part
of the double sum in the right-hand sides of (5.15) and (5.17) represents the action
of the invariant operator in the coordinate form, yielding the (n,m)-Fourier coef-
ficients of some invariant distribution on Ŝα, given the Fourier coefficients Uβν,µ of
∂T e/∂n on Ŝβ. It is advantageous that, if the minimal vector Rαβ is directed along
the x3-axis, then, according to (5.4) and (5.7), Yνµ(Rαβ) = 0 for µ 6= 0, and so, upon
substituting (5.21) into (5.15) and (5.17), only the term with µ = m contributes to
the near-field operator. Thus, for every α, the near-field summations are organized
as follows.

1. Initialize the (
α

n,m

)
-components

of the near-field operator.
2. For every β 6= α: (a) rotate the coordinate system (x1, x2, x3) to a new position

(x′1, x
′
2, x
′
3) superimposing the direction of the x3-axis with Rαβ; (b) calculate the

Fourier coefficients (Uβν,µ)′ of ∂T e/∂n on Ŝβ in the new coordinates (θ′, φ′) (asso-
ciated with x′1, x′2, x

′
3) via Uβν,µ for ν 6 k∗0(α, β), using the theory of rotational

transformations of spherical harmonics (theory of Wigner functions); (c) calculate
the contribution of the nearest image to(

α

n,m

)
-components

of the near-field operator in the new coordinate system (θ′, φ′) on Ŝα; (d) transform
the result of operation (c) back to the initial coordinates (θ, φ) on Ŝα using, again,
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Wigner functions and (e) add the result of (d) to the current(
α

n,m

)
-components

of the near-field operator.
The recurrent scheme (27) of Zinchenko (1994a), or the more universal relations

in Appendix C of the present paper can be used for fast calculation of the Wigner
functions. Most importantly, for every β, the computational cost of this algorithm is
O[(k∗0)3], compared to O[(k∗0)4] for direct summations (5.15) and (5.17). In particular,
the actual computational gain is about 10-fold for k∗0(α, β) = 30.

Since (4.12), (5.15), and (5.17) are not a positive definite, self-adjoint system,
we use, instead of conjugate gradient iterations (Zinchenko 1994a), a version of the
Zeidel iterative method. Namely, given T̃β in (4.12) and the right-hand sides of (5.15)
and (5.17), then (5.15) is used to update Uαn,m for n > 1, while (4.12) and (5.17),
solved simultaneously for Uα0,0 and Tα, serve to update these quantities. As the initial
approximation, we set Tα = K · xα, Uα0,0 = 0 and calculate the other Uαn,m from
(5.15) with Sµ−mαβ,n+ν = 0. The convergence of the average flux vector 〈q〉 obtained in
the course of iterations is considerably improved by the familiar δ2-transformation.
As usual, the calculation of 〈q〉 = −ΛeF · K for three different directions of K,
along the coordinate axes, yields the dimensionless conductivity tensor F for a given
configuration.

Both the theoretical study and numerical experiments show that this generally
successful iterative scheme fails to converge when the artificial gap ε is below some
small critical value ε∗. The value of ε∗ is roughly 35/γ2 for the case ραβ = 0, and
smaller for a granular material with contact deformations. In our calculations for
ε < ε∗, it was always possible to find the solution by a slightly different iterative
technique (and the results match those for ε > ε∗, in support of the statement
in § 3 that (3.14) (or (4.12)) is a well-posed problem for all ε > 0). Namely, Tα
is updated directly from (5.17), and Uα0,0 from (4.12) with underrelaxation. The
relaxation parameter has to be determined experimentally in the course of iterations,
making this scheme much less convenient. Fortunately, the existence of ε∗ is not a
serious limitation, since we are mostly interested in large values of γ, when ε∗ is quite
small and the limit ε→ 0 can be accurately estimated for ε well above ε∗.

Obviously, an increasing number of harmonics is required for ε→ 0, and so we used
k0 ≈ (3–4.5)ε−1/2 in our calculations of § 6, the ε−1/2-dependence being prompted
by (5.23)–(5.24). The absolute difference in the elements Fij of the conductivity
tensor calculated for k0 ≈ 3ε−1/2 and k0 ≈ 4.5ε−1/2 was found to be within 0.016,
independent of γ, Π, and a configuration. Finally, the number of iterations for Fij
to converge with the absolute accuracy of 10−3 is roughly 1.5ε−1/2 for ε∗ < ε � 1
and ε not very close to ε∗.

6. Numerical results

First, it is interesting to explore how easily the limit ε → 0 can be achieved in our
conductivity simulations. Figure 7a, b presents the dimensionless effective conduc-
tivity along the x1-axis versus ε, both for a small random close packing (N = 20)
with γ = 200 and point contacts (Π = 0), and for a relatively large RCP config-
uration (N = 100) with γ = 340 and contact deformations (Π = 0.01). Crosses
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(a)

(b)

Figure 7. The sensitivity of the effective conductivity by the semi-asymptotic theory to the
artificial gap between the spheres. (a) N = 20, c = 0.634, γ = 200, Π = 0; (b) N = 100,
c = 0.628, γ = 340, Π = 0.01

represent the solution with the consistency conditions in the original form (3.14) and
(3.17), squares—with near-neighbours included, as suggested in (4.12)–(4.13) (for
ε0max = 0.01). Of course, when ε→ 0, both the solutions tend to the same limit, but
the convergence is much faster when near-neighbours are accounted for. The choice
ε0max = 0.01 was also found to provide similar fast convergence, when ε→ 0, for the
other packings with different γ and Π.
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According to the strategy of § 3, this limit ε → 0 corresponds to the solution for
touching particles of finite conductivity by matched asymptotic expansions, valid for
γ � 1 and Π � 1, and the basic question is how accurate our semi-asymptotic theory
itself is. Fortunately, it has proved possible, for comparison, to calculate exactly the
conductivity of several small random close packings with point contacts and γ up to
several hundred, using the algorithm of Zinchenko (1994a) developed for arbitrary γ.
This code was verified previously by the comparison with McPhedran & McKenzie’s
(1978) calculations for a simple cubic array of superconducting spheres near close
packing and with boundary-integral calculations for a small random array of well-
mixed non-touching spheres at the volume fraction c = 0.5 and γ = 20 (Zinchenko
1994a). The one, but very important, difference is a new, absolutely stable method
of calculating the Wigner functions (Appendix C) we used in the rotational part of
that algorithm. The recurrent relations (27) of Zinchenko (1994a) were observed to
lose numerical stability for the harmonic order ` > 110–115, whereas the present
calculations required much higher values of `, because of the extremely slow con-
vergence for high γ. The extrapolation k0 → ∞ to the exact solution, necessary for
large γ, is somewhat intricate and has been found to be linear in

k−1
0 exp

[
−2
(
k0 ln

γ + 1
γ − 1

)1/2]
, (6.1)

where the exponential factor is prompted by the analytical result (B3) of Zinchenko
(1994a) for the rate of decay of Fourier coefficients in a system of touching spheres
of finite conductivity. Figure 8 demonstrates the dependence of F11 on k0 for one
random close packing with N = 9 (untypically small RCP density 0.582 in this case
is due to larger dispersion for small N) and different γ, up to 600. For very high k0,
the convergence should be faster than in figure 8, due to extremely small, but non-
zero gaps between nominal neighbours in computer-generated packings (§ 4). The
effect of gaps on the rate of decay of Fourier coefficients is described by exponents
(qα)n (see (5.23)–(5.24), with â replaced by a) and so, for ζα ≈ 2, the error in the
conductivity is believed to be reduced approximately by a factor exp[−k0(ζ − 2)1/2],
where ζ is the average of ζα. For this packing, ζ − 2 = 1.6× 10−8, and so the effect
of gaps on the rate of convergence could be significant only for k0 � 1000, when
the conductivity is already very close to the exact solution. For this reason, a linear
extrapolation of the data in figure 8, as shown by dashed lines, is permissible as a
very accurate estimation of the exact solution for high γ. For γ 6 200 (not shown in
figure 8), we used k0 6 180 and, when necessary, the same extrapolation to obtain
exact results. This exact solution, although successful, is very time-consuming, when
γ is large, even for a small number N = 9 of spheres used. For example, when
γ = 600 and k0 = 470, the calculation took 45 iterations and about 10 h on an IBM
AIX RISC/6000 workstation. Without the ideas of rotational transformations and
economical truncation, the essence of the algorithm, the solution in this case would
be about 240 times slower and intractable.

In contrast, the semi-asymptotic solution for this configuration and different γ was
found relatively easily, with the absolute error about 0.003 in F11, using ε = 0.0125
and k0 = 40. Unlike in the exact calculations, no computational difficulties appear
when γ grows; conversely, the number of iterations slightly decreases. Since the exact
solution has been obtained for slightly non-touching spheres, the existence of these

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Effective conductivity of loaded granular materials 2983

Figure 8. The dependence of the effective conductivity F11 along the x1-axis on the maximum
order of harmonics retained, k0, for a random close packing with N = 9, c = 0.582 and point
contacts. These numerical data are obtained by Zinchenko’s (1994a) algorithm, and the extrap-
olation k0 →∞ (dashed lines) corresponds to the exact solution.

extremely small gaps between nominal neighbours was also accounted for in the semi-
asymptotic solution, by taking Ψαβ = ln γ2 − 3.927− γ2ε0αβ/12 (see (2.27)). However,
the gap corrections −γ2ε0αβ/12 were found to reduce F11 only by about 0.004 even for
γ = 600, due to the very high degree of contactness (the average gap between nominal
neighbours being ≈ 10−7a). Figure 9 demonstrates remarkable agreement between
the exact and the semi-asymptotic solutions for all γ > 70, the relative error for
γ > 100 not exceeding 0.9%. The absolute error reaches a maximum at γ about 450,
and then decreases. We believe that the excellent accuracy of our semi-asymptotic
theory for all γ > 70 is due to the fact that ln γ is taken as a finite parameter,
and so the outer temperatures T1, . . . , TN depend on γ. We could act differently and
rigorously expand the solution (for ραβ = 0) in ln γ, assuming ln γ � 1. As follows
from (3.6)–(3.7), the outer temperatures, to the leading order, satisfy∑

β∈Aα
(T̃β − Tα) = 0 (6.2)

independently of γ and are easily determined from (6.2) by relaxation techniques.
These temperatures can be used, in principle, to solve the outer problem for touching
superconductors and calculate the flux defects Qα. These defects further determine
O(| ln γ|−1)-corrections to the outer temperatures from (3.6)–(3.7) and so on. The
expansion of the conductivity in ln γ is found from (3.8) and (3.10). In practice, this
process is applied to the consistency conditions (3.14) and (3.17), or (4.12)–(4.13),
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Figure 9. Comparison of exact and approximate conductivities F11 for a random close packing
with N = 9, c = 0.582 and point contacts. The dashed line is the two-term asymptotic expansion
in ln γ for γ →∞.

before the limit ε→ 0 is taken. In this manner, the two-term expansion of F11 in ln γ
for the given configuration was found (the dashed line in figure 9). Compared to the
semi-asymptotic solution, this procedure is not simpler (since the outer problem also
has to be solved) and proves to be much less accurate. The accuracy of this approach
cannot be easily improved by calculating further terms, because an expansion in
inverse powers of ln γ is computationally inefficient. Even though the semi-asymptotic
graph in figure 9 is almost straight in ln γ, the parameters of the best linear fit in
the practical range γ 6 O(103) are not close to those in the hypothetical limit of
ln γ →∞. Figure 10 confirms that some of the outer temperatures calculated by the
semi-asymptotic theory, indeed, approach their limiting values, determined by (6.2),
quite slowly, as γ →∞.

The configuration for figure 9 was chosen not to contain close non-neighbours
(near-neighbours); more specifically, the minimum gap between non-neighbours in
this configuration is 0.05a. The presence of near-neighbours in more typical ran-
dom close packings should make the semi-asymptotic theory somewhat less accu-
rate. Indeed, the gaps between non-neighbours are treated in our theory as the gaps
between superconductors, thus overestimating the actual local flux. We believe this is
the main reason for slight overestimation of the conductivity by the semi-asymptotic
solution for large γ, but there is no rigorous way to account for this and modify
our theory. The comparison of the exact and semi-asymptotic solutions for larger
and typical random close packings (N = 20 and 50) is given in figure 11a, b. Exact
results were obtained by computationally very intensive calculations using k0 6 400
for N = 20 and k0 6 300 for N = 50, with the extrapolation k0 → ∞ when nec-
essary, as in figure 8. Again, the very small gaps between nominal neighbours (with
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Figure 10. The particle temperatures, Tα, by the semi-asymptotic theory for a random close
packing with N = 9, c = 0.582 and point contacts. Dark squares are for γ = 80, light squares for
γ = 600, and crosses for γ →∞. In each case, the average particle temperature in the periodic
cell is made zero, by adding a suitable constant to all Tα.

the average 3× 10−7a for N = 20 and 10−7a for N = 50) have no appreciable effect
on the conductivity simulations by the semi-asymptotic theory in the studied range
γ 6 400, nor do they affect the extrapolation k0 →∞ in the exact calculations. The
absolute difference between the two solutions reaches a maximum (0.26 for N = 20
and 0.29 for N = 50) at some large γ ∼ 200 and then slightly decreases. Presumably,
the studied range γ 6 400 is insufficient to observe further substantial decrease of
the absolute error, which is expected to behave like O(γ−1) (with some fairly large
coefficient, see below) at γ →∞. The relative error drops from 2.6% for γ = 100 to
1.9% for γ = 300, when N = 50; for N = 20, the error is within 1.8% in the whole
range γ > 80. Although these errors are higher than in figure 9, our semi-asymptotic
solution is still quite successful and much more accurate than the two-term asymp-
totic expansion in ln γ (the dashed line in figure 11b). Moreover, since the statistics
of near-neighbours in the packing with N = 50 is already close to that for N = 100
and 200 (figure 12), the error of the semi-asymptotic theory for large random close
packings with γ = O(102–103) is also expected to be about 2–2.5%. The applicabil-
ity of our theory to large packings can be also explained by the fact that the finite
γ-correction P (γ2εαβ) to the local flux between near-neighbours (see (2.8)) behaves
like π2/(γε1/2αβ ) for γε1/2αβ � 1, as follows from (2.24), and the integrable singularity
ε
−1/2
αβ for small gaps makes the overall O(γ−1)-correction fairly large, but finite. Note

that the alternative of exact calculations for large packings and γ ∼ O(103) would
be very prohibitive.
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(a)

(b)

Figure 11. Comparison of exact and approximate conductivities F11 for typical random close
packings of non-deformed spheres with (a) N = 20, c = 0.634 and (b) N = 50, c = 0.618. The
dashed line in figure 11b is the two-term asymptotic expansion in ln γ for γ →∞.

It should not be surprising that our exact value of F11 = 16.71 for γ = 400 and
c = 0.634 from figure 11a exceeds the maximum conductivity of 15.03 calculated so
far for a body-centred cubic (BCC) lattice of superconducting spheres at the volume
fraction of c = 0.677, very close to the maximum packing value of cmax =

√
3π/8
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Figure 12. Average number ∆n of near-neighbours of a sphere in a random close packing, within
the centre-to-centre distance a(2 + ε0). Line 1 is for an individual packing with N = 50 (the
same configuration as in figure 11b); lines 2 and 3 are averages over 15 and 10 packings with
N = 100 and 200, respectively.

Figure 13. Effective conductivity f∗ of randomly packed granular materials versus the conduc-
tivity ratio. Lines 1–4 are from the present semi-asymptotic theory (table 3), and the light and
dark squares are experimental data of Turner (1973) and Kling (1938), respectively.
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Table 3. Effective conductivity f∗ of random close-packed granular materials with contact
deformations (N = 200)

Π γ = 100 150 225 340 510 765 1150 1721 2540

0 11.49 12.99 14.48 15.98 17.45 18.91 20.37 21.81 23.20
0.0025 11.52 13.06 14.61 16.24 17.95 19.87 22.15 24.98 28.59
0.005 11.60 13.20 14.89 16.78 18.94 21.59 25.09 29.83 36.27
0.0075 11.70 13.41 15.27 17.47 20.13 23.61 28.41 35.14 44.50
0.01 11.83 13.65 15.71 18.25 21.45 25.79 31.93 40.69 53.00
0.015 12.15 14.23 16.72 19.98 24.33 30.43 39.30 52.16 70.40
0.02 12.52 14.88 17.85 21.87 27.39 35.29 46.92 63.92 88.13

Table 4. Effective conductivity f∗ of random close-packed granular materials with contact
deformations (N = 100)

Π γ = 100 225 510 1150 1721

0 11.42 14.38 17.32 20.22 21.65
0.005 11.52 14.79 18.80 24.89 29.57
0.01 11.75 15.60 21.29 31.64 40.31
0.02 12.43 17.71 27.15 46.46 63.27

Table 5. Effective conductivity f∗ of random close-packed granular materials with point contacts

γ = 2 3.5 5 7.5 10 14 20 30 45 70
1.56 2.25 2.81 3.59 4.22 5.04 6.01 7.21 8.49 9.97

(McKenzie et al . 1978). The volume fraction and the coordination number in our
case are smaller, but the local flux between two touching spheres with γ = 400 turns
out to be higher than that between superconducting spheres in the BCC lattice at
c = 0.677. Indeed, the non-dimensional gap ε in the latter case is 0.00312, and so the
local flux (3.12) between superconducting spheres contains ln(ε−1) = 5.77, compared
to ln 4002 − 3.927 = 8.06 in (2.28) for touching spheres with γ = 400.

In the practical case of a random granular material with contact deformations,
there seems to be no prospect of exact conductivity simulations at all even for
small N , at least with γ ∼ O(103) and typically small contact spot radii. Our
semi-asymptotic theory, however, that has proved successful for materials with point
contacts, can be also used with confidence as a very accurate approximate method
to account for contact deformations. The only computational difference is the full
expression (3.7) to be used for Ψαβ. It should be clearly understood that the con-
tact deformations do not contradict the existence of (extremely) small gaps between
neighbours in our computer-generated packings; these configurations are used only
to approximate the outer geometry of perfectly touching spheres with point contacts,
and the actual gaps between neighbours are insignificant, since they are much smaller
than the values of ε necessary for convergence ε → 0. Table 3, the main result of
the present work, presents the dimensionless effective conductivity f∗ of a random
close-packed granular material as a universal function of the two parameters, γ � 1
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and the elastic parameter Π � 1. These results are obtained by averaging over 10
packings with N = 200 (average density 0.631), the conductivity f∗ being defined
for each configuration as (F11 + F22 + F33)/3; small off-diagonal elements Fij disap-
pear on averaging and are of no interest. The boundary-value problem was solved
three times for each configuration, with ε = 0.005, ε0max = 0.01, k0 = 40, and some
3× 20 iterations, each iteration taking about 23 s on an IBM AIX RISC/6000 work-
station; in this case, the total computational gain through the economical truncation
and the rotational algorithm is about 320-fold. The statistical error of the values in
table 3, estimated through the data dispersion, as usual, is 0.2–0.3%, i.e. less than the
expected error of the semi-asymptotic theory itself. To explore the effect of the parti-
cle number, calculations have been also performed for N = 100 and several selected
pairs (γ, Π), with averaging over 15 random close packings (table 4, the average
packing density 0.628). The difference between the results for N = 100 and 200 is
systematic, but only 0.7–1%. For one of the configurations with N = 100, γ = 340,
Π = 0.01, we checked the accuracy of the solution of the boundary-value problem
(the difference in f∗ for k0 = 40 and 60 being only 0.016) and found ε = 0.005
sufficient to estimate the limiting value of f∗ at ε→ 0 to about 0.01 (figure 7b).

These numerical results can be complemented by two simple cases when the solu-
tion of the boundary-value problem is not required. The first is the case of non-
deformed spheres with extremely high γ, when

f∗ ∼ 3.51 ln γ. (6.3)

The coefficient 3.51 here is obtained through the numerical solution of (6.2), as the
slopes of dashed lines in figures 9 and 11b, and represents the average over 10 packings
with N = 200 (averaging over 15 RCP configurations with N = 100 yields a close
value 3.48). The analytical theory of Batchelor & O’Brien (1977) gives the somewhat
different value 4.0, because their ‘effective’ coordination number 6.5 (instead of 6)
and approximate averaging both lead to slight overestimation. We did not proceed
with calculating further terms in (6.3), since this approach was shown for individual
configurations to be less accurate than the semi-asymptotic solution.

The second is the case of ‘vacuum environment’, when the conduction is only
through the small contact spots. In this case the flux between neighbours is

2γΛeραβ(T̃β − Tα)

(Yovanovich 1975; Batchelor & O’Brien 1977), and so the flux balance equations take
the form ∑

β∈Aα
ραβ(T̃β − Tα) = 0, (6.4)

the mechanical load only affecting the proportionality factor in ραβ. The outer tem-
peratures T1, . . . , TN are determined numerically from (6.4) and used to find the
contact spot contributions to the average flux, resulting in a simple relation

f∗ ∼ 1.46γΠ. (6.5)

The coefficient 1.46 is the average over 10 packings with N = 200 (compared to
1.45 for averaging over 15 configurations with N = 100). Previously, the vacuum-
environment conductivity was rigorously determined only for different regular pack-
ings, when the solution of (6.4) is not required (Chan & Tien 1973), and these results,
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sensitive to the packing type, cannot be used for comparison. Obviously, (6.5) is an
approximation to f∗(γ,Π) for Π 6= 0 and γ →∞, but, in practice, γ has to be very
large for (6.5) to be valid. For example, (6.5) underestimates f∗ by a factor of about
two, when γ ∼ 1000 and Π = 0.01; the error of (6.5) for Π = 0.02 and γ = 1721 is
still 21%.

Figure 13 demonstrates the effect of contact deformations on the conductivity of
granular materials. To give some idea of how noticeable this effect can be under
normal conditions, we note that for a free-standing (without external load) bed
of relatively rigid steel balls in a gas, the elastic parameter Π is about 0.005 at
the depth of 50 cm below the surface, and for a typical value γ = 1150 our theory
predicts f∗ = 25.1 compared to 20.4 for non-deformable particles; with an additional
load of 170 kPa, f∗ further increases to 31.9. The deformation effect can be much
more pronounced for softer, non-metallic particles.

On the other hand, table 3 shows that, for γ < 100, which is often the case for
liquid-particle systems, the deformation effect is small under most practical situa-
tions, and so we have complemented tables 3 and 4 by the values of f∗ for random
close-packed granular materials with point contacts and small-to-moderate conduc-
tivity ratio γ (table 5). These numerical data are obtained using the exact algorithm
of Zinchenko (1994a) and are averages over 15 packings with N = 100. Different val-
ues of k0 6 100 were used for each γ, to ensure an absolute accuracy of f∗ within 0.01
for a typical configuration. The convergence k0 →∞, although much better than in
figure 8, is still slow for moderately high γ due to the interparticle contacts; e.g. for
k0 = 10 the conductivity f∗ is 9% in error, when γ = 45. A new strategy (Sangani
& Mo 1994) has been recently proposed to bypass using high-order harmonics (or
multipoles) in the solution of boundary-value problems of suspension hydrodynam-
ics. However, to the best of our knowledge, this approach has not been tested yet in
granular media conductivity simulations. As expected, for small γ 6 2, the Maxwell–
Clausius–Mosotti approximation f∗ = [γ + 2 + 2(γ − 1)c][γ + 2 − (γ − 1)c]−1, with
c = 0.628 as the average density for N = 100, is very accurate.

7. Comparison with experiments

In contrast to contact deformations always increasing the conductivity, there are sev-
eral practical factors ignored in our analysis that act in the opposite direction: (1)
interparticle friction, (2) container-size effects, and (3) additional thermal resistance
due to surface roughness in the contact areas. Highly frictional particles having been
poured into a large vessel are known to form a random ‘loose’ packing and shrink to
a random close packing only after considerable shaking or vibration (Scott & Kilgour
1969). Both the loose packing density, which can be as low as 0.56–0.57 (Scott &
Kilgour 1969; Onoda & Liniger 1990), and, most importantly, a reduced number of
contacts can make the experimental conductivities lower than for idealized random
close packings. (It is also true that the friction may have some effect on the con-
tact radii in experimental random close packings prepared by vibration, making the
problem of finding the contact forces statically indeterminate. However, regardless of
how this difficult indeterminacy is resolved, this effect is believed to be very small for
small friction coefficients, due to the 1/3-exponent in (4.8).) Second, the experimen-
tal random close-packing densities are somewhat sensitive to finite particle-to-box
size ratios 2a/L (e.g. according to Scott & Kilgour (1969), the experimental density
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can be 3.5–4% lower for 2a/L = 0.1 than in the limit a/L → 0). This should also
have some effect on the conductivity, unless a proper extrapolation is made. Unfor-
tunately, we cannot estimate the effect of surface roughness in the contact areas on
granular media conductivity, because the existing experiments on contact conduc-
tance are irrelevant (as discussed in § 1), but this effect is expected to be typically
small, due to large contact pressures (see § 1).

At present, an adequate comparison of our theoretical calculations given in tables
3–5 with experimental data meets some difficulties, because the available experiments
emphasized the effect of γ on f∗, and the other factors affecting the conductivity
were not controlled, leading to some random scatter of experimental points (Batch-
elor & O’Brien 1977, fig. 6). More recently, Duncan et al . (1989) claimed to have
studied systematically the effect of a mechanical load on the granular media con-
ductivity, but their results look confusing even for free-standing packed beds. For
example, at zero external load, the effective conductivity of a granular material with
steel balls in nitrogen and argon environments under atmospheric pressure was found
to be about 5.6 and 5 W m−1 K−1, respectively (fig. 3c of their paper). From these
data, we find f∗ = 190–250 for γ = 530–790, using the conductivities Λe = 0.029
and 0.020 W m−1 K−1 for nitrogen and argon, respectively, at the average bed tem-
perature 338 K (Song et al . 1993). These values of f∗ are an order of magnitude
higher than the data of several other authors (fig. 6 of Batchelor & O’Brien) who
also experimented with steel balls in various gases, the discrepancy far exceeding the
typical scatter of effective conductivity measurements. Besides, Duncan et al . (1989)
do not explain why their free-standing bed conductivity is unchanged, when the steel
balls are replaced by aluminium particles an order of magnitude more conductive,
both for gaseous and vacuum environments. We believe there may be a measurement
error or some strong, non-controlled factor, making these experiments unsuitable for
comparison.

Among the other data, we have chosen Turner’s (1973) and Kling’s (1938) mea-
surements (figure 13) as the least sensitive to container-size effects. Turner’s data
(light squares) are for electrical conductivity of packed beds of relatively soft ion-
exchange resin balls (bed height 10 cm, particle diameter 0.5–1 mm, packing density
0.60) in aqueous solutions of NaCl, while Kling’s measurements (dark squares), taken
from Batchelor & O’Brien (1977), are for the effective thermal conductivity of steel
balls in various gases at a packing density 0.62. Unfortunately, the specific gravity of
Turner’s particles is known only approximately (∆ρ > 0.1 g cm−3), and the elastic
modulus of ion-exchange resin was unavailable from the literature, and so even a
rough estimate of the average elastic parameter Π for his experiments can not be
made. However, a strong increase of f∗, nonlinear in ln γ, can be only explained
by particle deformations in Turner’s experiments. Kling’s measurements should be
less affected by deformations, but the bed height in his experiments was unavailable
to find the average elastic parameter Π. For small γ ∼ 100, when the deformation
effect is weak, both Turner’s and Kling’s experimental data are slightly below the
theoretical values, and these differences are most likely due to the friction effect,
not to the additional contact resistance. When the experimental data on the contact
conductance between rough surfaces at high contact pressures become available, our
theory can be very simply modified. Namely, if the asperity size is small compared
to ραβ, the temperature continuity at the circle of contact (2.32) can be replaced
by an empirical correlation, relating the temperature jump to the thermal flux den-
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sity, local pressure, surface morphology and, perhaps, some other parameters. Thus,
(2.29) can be solved anew to determine Hc +∆Hm, leaving all the rest of our method
and numerical codes unchanged. As for the friction effect, probably, the most impor-
tant correction to our theory, it seems promising to use in future calculations a novel
quasi-static approach to simulating granular assemblages of frictional particles (God-
dard et al . 1993, 1994) in a combination with our methods for solving boundary-value
problems.

8. Conclusions and future work

A novel simulation method capable of calculating the effective conductivity of ran-
domly packed granular materials with high particle-to-medium conductivity ratio γ
has been developed. The basic element is the highly efficient strategy for solving the
multiparticle boundary-value problem by matched asymptotic expansions for γ � 1.
We neglect the O(γ−1) corrections due to the particle temperature non-uniformity
in the outer region, but take ln γ as a finite parameter, and so the outer problem
for touching superconductors is coupled to the near-contact solutions; in the latter,
small contact deformations under a mechanical load are accounted for. Contact spot
radii are rigorously found as perturbations from the Hertz theory and the mechan-
ical balance of normal contact reactions on the microscale. Using this method, the
non-dimensional effective conductivity for random close-packed beds of smooth uni-
form spheres is found by large-scale simulations, as a universal function of γ and
the non-dimensional average pressure in the material. High accuracy (1–2.5%) of
our asymptotic approach for all γ > 100 is demonstrated by the comparison with
the exact solution for several individual small-to-moderately large packings of non-
deformed spheres. Due to some idealizations in the analysis, a future experimental
check of the present theory would require conductivity measurements for carefully
prepared random close packings of low-friction spheres, like those in the experiments
of Scott & Kilgour (1969). On the other hand, the present calculations can be eas-
ily generalized to include the additional contact resistance due to surface roughness
in the contact areas, when the relevant experimental data for two particles become
available. Besides, it seems possible to include frictional effects in future conductiv-
ity simulations, using recent advances in granular mechanics (Goddard et al . 1993,
1994) and our methods for solving the boundary-value problem.

Apart from static granular materials, a promising application of our methodology
is a dynamic simulation of flowing suspensions at extremely high volume fractions,
close to the ‘percolation-like threshold’, when large clusters of nearly touching par-
ticles should form (as was first discovered in model two-dimensional simulations by
Brady & Bossis (1984) and Bossis & Brady (1985)). Even though the main term in
the lubrication resistance between solid spheres is strongly singular, O(ε−1), there
is no evidence, either from experiments or theoretical works, that this term solely
determines the singularity of the bulk properties of random flowing suspensions at
extreme volume fractions; otherwise, the observed suspension viscosities would have
been much higher. Thus, the logarithmic term, ln ε−1, is also of vital importance, and
O(1)-contributions from the outer region cannot be neglected as well. This makes
the problem close to that of granular media conductivity, although the structure
(‘coordination number’, etc.) will be different. On these grounds, it seems possible
to develop an adequate simulation method for extreme volume fractions in the spirit

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Effective conductivity of loaded granular materials 2993

of matched asymptotic expansions of § 3, with explicit lubrication terms, not based
on pairwise additivity approximations.

I am grateful to Professor R. H. Davis for encouraging support and helpful discussions.

Appendix A. The analysis of a model two-sphere problem

A standard bispherical coordinate solution for two equal perfectly conducting spheres
Ŝα and Ŝβ of radius â kept at temperatures Tα and Tβ in an unbounded medium
(T → 0 at infinity) yields the expressions for the flux

1
â

∫
Ŝα

∂T e

∂n
dS = −2π sinh η0

∞∑
n=0

[
(Tα + Tβ)e−(n+1/2)η0

cosh(n+ 1/2)η0
+

(Tα − Tβ)e−(n+1/2)η0

sinh(n+ 1/2)η0

]
(A 1)

and the thermal dipole

1
â2

∫
Ŝα

(z − zα)
∂T e

∂n
dS = 2π sinh η0

∞∑
n=0

e−(2n+1)η0 [cosh η0 − (2n+ 1) sinh η0]

× [(Tα + Tβ) tanh(n+ 1
2)η0 + (Tα − Tβ) coth(n+ 1

2)η0], (A 2)

where cosh η0 = 1 + ε/2 and εâ is the gap between the spheres. Using the Euler–
McLauren formula (e.g. Abramowitz & Stegun 1964), one can derive the asymptotic
relation

h
∞∑
n=o

f [(n+ 1
2)h] ∼

∫ ∞
0

f(x) dx+
∞∑
k=1

dkf
(2k−1)(0)h2k, h→ 0 (A 3)

for any function f(x), regular for x > 0 and exponentially decaying with its deriva-
tives at x→∞; universal coefficients dk are connected to Bernoulli numbers B2k. It
is immediately seen from (A 3) that the terms with (Tα + Tβ) represent regular con-
tributions to (A 1)–(A 2) at ε → 0, expandable in integer power εk, k > 0. Singular
sums in (A 1)–(A 2) can be regularized as

∞∑
n=0

e−(n+1/2)η0

sinh(n+ 1/2)η0

=
∞∑
n=0

e−(n+1/2)η0

[
1

sinh(n+ 1/2)η0
− 1

(n+ 1/2)η0

]
+

1
η0

ln coth(1
4η0), (A 4 a)

∞∑
n=0

e−(2n+1)η0 coth(n+ 1
2)η0

=
1
η0

ln coth(1
2η0) +

∞∑
n=0

e−(2n+1)η0

[
coth(n+ 1

2)η0 − 1
(n+ 1/2)η0

]
(A 4 b)

and expanded using (A 3). Thus, the expressions (A 1)–(A 2) have the asymptotic
structure c0 ln ε+ c1 +O(ε ln ε) at ε→ 0, as was stated in § 3, and the O(ε ln ε)-terms
come from the correction ε/6 in the asymptotics sinh η0/η0 ∼ 1 + ε/6. With the
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original radius a = â(1 + ε/2) instead of â in (A 1)–(A 2), the O(ε ln ε)-terms would
be 2 and 5 times larger, respectively. For this reason, the ratio â/a, instead of unity,
is used in (3.15) and (3.17).

To demonstrate that (3.14) can be a well-posed problem for all ε > 0, we will
show that the corresponding homogeneous problem for two spheres has only a zero
solution. It follows from (A 1) and a similar expression for the flux through Ŝβ that
the boundary conditions (3.14) imply Tα+Tβ = 0 and are reduced to πâD(Tα−Tβ) =
0, with

D(ε) = 2 sinh η0

∞∑
n=0

e−(n+1/2)η0

sinh(n+ 1/2)η0
+ (1 + 1

2ε)Ψαβ − ln ε−1. (A 5)

When Ψαβ > 0, the function D(ε) attains its minimum value ln(γ2/4)+Hc +∆Hm
at ε→ 0. Thus, D(ε) > 0 for all ε > 0, if γ > 7.12, and so Tα = Tβ = 0.

Appendix B. The expansion of a harmonic function into
spherical harmonics

Lemma B 1. Let f(x) be a harmonic function, regular for |x| 6 R. Then for
0 6 µ 6 ν∫

|x|=R
f(x)Yνµ(x) dΩ = (2R)ν

[
4π

(2ν + 1)!

]1/2

Cν,µ(D1 + iD2)µDν−µ
3 f(x)|x=0,

(B 1)
where Di = ∂/∂xi and the coefficients Cν,µ are defined by (5.12).

Proof . Green’s theorem yields for |x| < R

f(x) =
R2

4π

∫
|y|=R

[
1

|x− y|
∂f

∂R
(y)− f(y)

∂

∂R

1
|x− y|

]
dΩy. (B 2)

Applying the operator (D1 + iD2)µDν−µ
3 to both sides of (B 2), using Maxwell

relation (Hobson 1955) in the form

Yνµ(x)
|x|ν+1 = (−2)ν

[
(2ν + 1)
4π(2ν)!

]1/2

Cνµ(D1 + iD2)µDν−µ
3

(
1
|x|
)

(B 3)

and setting then x = 0, we arrive at

2ν
[

(2ν + 1)
4π(2ν)!

]1/2

Cν,µ(D1 + iD2)µDν−µ
3 f(x)|x=0

=
1

4πRν−1

∫
|y|=R

[
Yνµ(y)

∂f

∂R
(y) +

(ν + 1)
R

f(y)Yνµ(y)
]

dΩ. (B 4)

Using Green’s theorem for the regular harmonic functions |y|νYνµ(y) and f(y),
we have ∫

|y|=R
Yνµ(y)

∂f

∂R
(y) dΩ =

ν

R

∫
|y|=R

f(y)Yνµ(y) dΩ, (B 5)

and (B 1) follows from (B 4) and (B 5).
The relation (B 1) can be also obtained from a general integral theorem (Hobson

1955, § 103), but the present, self-contained derivation is much simpler. Obviously,
the case µ < 0 can be reduced to µ > 0 by (5.7). �
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Appendix C. An absolutely stable scheme for calculating
Wigner functions

According to the theory of Wigner functions (Biedenharn & Louck 1981; Nikiforov
& Uvarov 1974), the rotational transformation of spherical harmonics Y`m(θ, φ) of
a given order ` to a new coordinate system (θ′, φ′) is determined, to within trivial
azimuthal rotations, by a complex orthogonal matrix P `mm′(ψ) (|m|, |m′| 6 `), where
ψ is the angle between the new and old x3-axes (see also (24) of Zinchenko 1994a).
The coefficients P `mm′ obey

P `mm′ = P `m′m, P `mm′ = P `−m,−m′ , (C 1)

so that only the case |m′| 6 m 6 ` has to be considered, and are related to Jacobi
polynomials P (α,β)

n (cosψ) (Nikiforov & Uvarov 1974; Biedenharn & Louck 1981).
Real coefficients Q`mm′ = im−m

′
P `mm′ can be written for |m′| 6 m 6 ` as

Q`mm′ =
1

2m
C`,m′

C`,m
(1− η)(m−m′)/2(1 + η)(m+m′)/2P

(m−m′,m+m′)
`−m (η), η = cosψ.

(C 2)

In particular, explicit relations follow from (C 2):

Q``m′ =
[

(2`)!
(`−m′)!(`+m′)!

]1/2(1− η
2

)(`−m′)/2(1 + η

2

)(`+m′)/2

. (C 3)

A recurrent scheme (|m′| 6 m 6 `− 1)

Q`mm′ =
[

(`+m)
(`−m)(`2 −m′2)

]1/2

(`η −m′)Q`−1
mm′

−
[

(`−m− 1)
(`−m)(`2 −m′2)

]1/2

` sinψQ`−1
m+1,m′ , (C 4)

which is derived from the relation between dP (α,β)
n (x)/dx, P (α,β)

n (x) and P
(α,β)
n+1 (x)

(e.g. Abramowitz & Stegun 1964) and is equivalent to (27c) of Zinchenko (1994a),
provides, in principle, the values of the rest Q–coefficients, but this method is numer-
ically unstable for large ` (typically, for ` slightly above 100 in double precision
calculations). An alternative scheme (|m′|+ 1 6 m 6 `)

Q`mm′ =
[

(`−m)
(`+m)(`2 −m′2)

]1/2

(`η +m′)Q`−1
mm′

+
[

`+m− 1
(`+m)(`2 −m′2)

]1/2

` sinψQ`−1
m−1,m′ (C 5)

derived from the relation between

P (α,β)
n (x),

dP (α,β)
n (x)
dx

,
dP (α,β)

n+1 (x)
dx
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would be stable, but provides no way of calculating Q`m,±m. Instead, a recurrent
relation (|m′|+ 1 6 m 6 `)

Q`m−1,m′ +
2(m′ − ηm)

sinψ[(`+m)(`−m+ 1)]1/2
Q`mm′

+
[

(`+m+ 1)(`−m)
(`+m)(`−m+ 1)

]1/2

Q`m+1,m′ = 0 (C 6)

(with the last term set to zero for m = `) can be derived from (C 4) and (C 5).
Starting from (C 3), all the coefficients Q`mm′ with m = `− 1, `− 2, . . . , |m′| can be
found successively from (C 6). We used this scheme to calculate rotational matrices
for random particle configurations and ` 6 550, and found the exact relation∑

|m′|6`
|P `mm′ |2 = 1 (C 7)

to hold at least to O(10−13), which suggests the numerical stability of this scheme for
all `. With square roots in (C 6) factorized and calculated beforehand, this scheme
is almost as economical as that of Zinchenko (1994a).
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